K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{6}=2\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\right)=2\)

\(\Leftrightarrow\left(x-1\right)\frac{4}{6}=2\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

~Học tốt~

1 tháng 4 2019

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{6}=2\) 

\(\Rightarrow\) \(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=2\right)\)

\(\Rightarrow\) \(\left(x-1\right).1=2\)

\(\Rightarrow\) \(x-1=2\)

\(\Rightarrow\) \(x=3\)

Study well ! >_<

16 tháng 7 2018

a

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a)

\(\begin{array}{l}\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{2}{{3{\rm{x}}}} - \frac{x}{{1 - x}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4\left( {1 - x} \right) - 6{{\rm{x}}^2} + 3\left( {6{{\rm{x}}^2} - 4} \right)}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{4 - 4{\rm{x}} - 6{{\rm{x}}^2} + 18{{\rm{x}}^2} - 12}}{{6{\rm{x}}\left( {1 - x} \right)}}\\ = \frac{{12{{\rm{x}}^2} - 4{\rm{x}} - 8}}{{6{\rm{x}}\left( {1 - x} \right)}}\end{array}\)

b)

\(\begin{array}{l}\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\\ = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{x}{{{x^3} - 1}}\end{array}\)

c)

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{ - 4{\rm{x  -  2}}}}{{\left( {x + 2} \right)\left( {1 - x} \right)}}.\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{\left( { - 4{\rm{x}} - 2} \right)\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 8{\rm{x}} - 2{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{ - 4{{\rm{x}}^2} + 6{\rm{x}} + 4}}{{\left( {1 - x} \right)\left( {4{{\rm{x}}^2} - 1} \right)}}\end{array}\)

 

d)

\(\begin{array}{l}1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\\ = 1 + \frac{{{x^3} - x}}{{{x^2} + 1}}.\frac{{1 + x - 1}}{{1 - {x^2}}}\\ = 1 + \frac{{x\left( {{x^2} - 1} \right)}}{{{x^2} + 1}}.\frac{x}{{1 - {x^2}}}\\ = 1 + \frac{{ - {x^2}\left( {{x^2} - 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}\\ = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\\ = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\\ = \frac{1}{{{x^2} + 1}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)                        

Vậy \(x = \frac{{ - 2}}{3}\).

b)

\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)

Vậy\(x = \frac{1}{12}\).

c)

\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)               

Vậy \(x = \frac{7}{3}\).

d)

\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)

Vậy \(x = \frac{{ - 9}}{{10}}\).

5 tháng 5 2018
Sai đề câu a phải không
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)