Tính tổng
S=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 10/56 + 10/140 + 10/260 + ....... + 10/1400
S = 5/28 + 5/70 + 5/130 + 5/700
3S/5 = 3/4 x 7 + 3/7 x 10 + 30/10 x 13 + ....... + 3/25 x 28
3S/5 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ........ + 1/25 - 1/28
3S/5 = 1/4 - 1/28
3S/5 = 3/14
S = 3/14 x 5/3
S = 5/14
Vậy S = 5/14
\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+\frac{10}{1400}\)
\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(S=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(S=5.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(S=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{25.28}\right)\)
\(S=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(S=5.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(S=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(S=\frac{15}{14}\)
M = 10/56+10/140+10/260+10/1400
M= 5/28+5/70+5/130+5/700
3M/5=1/4-1/7+1/7-1/10+1/10-1/13+...+1/25
3M/5 = 3/14
M= 3/14+5/3=5/14
\(=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(=\frac{5}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\times\frac{3}{14}\)
\(=\frac{5}{14}\)
\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{14}\)
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{2^{10}.3-3}{2^9}\)
Vậy \(S=\frac{2^{10}.3-3}{2^9}\)
vận dụng 3S lên
xong tìm S nha bn ok
tại k có thời gian nên chỉ giúp thế thôi
B = 10/56 + 10/140 + 10/260 + ...+ 10/1400
B= 5/28 + 5/70 +.....+10/700
= 5/(4.7)+5/(7.10)+....5/(25.28)
3B= 5( 1/4 - 1/7 +1/7-1/10+......+1/25-1/28)
3B = 5 (1/4-1/28)
3B=15/14
B = 15/14 : 3
B = 5/14
Ta có:\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
=\(\frac{5}{3}\times\left(\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+...+\frac{3}{700}\right)\)
=\(\frac{5}{3}\times\left(\frac{3}{4\times7}+\frac{3}{7\times10}+\frac{3}{10\times13}+...+\frac{3}{25\times28}\right)\)
=\(\frac{5}{3}\times\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
=\(\frac{5}{3}\times\left(\frac{1}{4}-\frac{1}{28}\right)\)
=\(\frac{5}{3}\times\frac{3}{14}\)
=\(\frac{5}{14}\)
Ko bít có đúng ko nhưng cứ thử nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
S= 10/56+10/140+.....+10/1400
S= 5/28+5/70+.....+5/700
S= 5/4.7+5/7.10+......+5/25.28
S=5/3( 1/4-1/7+1/7-1/10+......+1/25-1/28)
S= 5/3.(1/4-1/28)
S= 5/3. 3/14
S= 15/42
VẬY S= 15/ 42