Cho: A=(20102009+20092009)2010
B=(20102010+20092010)2009.
So Sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{2009}+\frac{2}{2009}+...+\frac{2008}{2009}\\ \frac{\left(1+2008\right)\cdot2008\div2}{2009}=\frac{2017036}{2009}\)
\(\dfrac{2009}{2010}=\dfrac{2009\cdot10001}{2010\cdot10001}=\dfrac{20092009}{20102010}\)
\(A=2010.20092009-2009.20102010\)
\(A=2010.2009.10001-2009.2010.10001\)
\(A=0\)
\(A=2010\cdot20092009-2009\cdot20102010\)
\(A=2010\cdot2009\cdot10001-2009\cdot20102010\)
\(A=20102010\cdot2009-2009\cdot20102010\)
\(A=0\)
Có \(\frac{20092009}{20102010}=\frac{2009.10001}{2010.10001}=\frac{2009}{2010}\)
=> \(\frac{2009}{2010}=\frac{20092009}{20102010}\)
Đặt \(a=2010^{2009};b=2009^{2009}\)\(\left(a,b>0\right)\)
\(A=\left(a+b\right)^{2010}=\left(a+b\right)^{2009}.\left(a+b\right)\)
\(B=\left(a.2010+b.2009\right)^{2009}=\left[a+2009\left(a+b\right)\right]^{2009}\)
Chia A và B cho \(\left(a+b\right)^{2009}:\)
\(A=a+b;B=\dfrac{\left[a+2009\left(a+b\right)\right]^{2009}}{\left(a+b\right)^{2009}}\)\(=\left(\dfrac{a}{a+b}+2009\right)^{2009}\)
Dễ thấy A<B.
\(B=\left(2010^{2009}.2010+2009^{2009}.2009\right)^{2009}\)
\(B< \left(2010^{2009}.2010+2009^{2009}.2010\right)^{2009}\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2009}.2010^{2009}\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2009}.\left(2010^{2009}+2009^{2009}\right)\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2010}\)
\(\Rightarrow B< A\)