Giải hệ phương trình sau :
{ x/y - y/x = 5/6
{ x^2 - y^2 =5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+24=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x+y}{5}=\dfrac{x-y}{3}\\\dfrac{x}{4}=\dfrac{y}{2}+1\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}3x+3y=5x-5y\\x=2y+4\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}2x-8y=0\\x-2y=4\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-4y=0\\x-2y=4\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} 2(\sqrt{5}+2)x+2y=6-2\sqrt{5}\\ -x+2y=6-2\sqrt{5}\end{matrix}\right.\)
Lấy PT(1) trừ PT(2) theo vế:
$\Rightarrow 2(\sqrt{5}+2)x+x=(6-2\sqrt{5})-(6-2\sqrt{5})$
$\Leftrightarrow (2\sqrt{5}+5)x=0$
$\Leftrightarrow x=0$
$y=3-\sqrt{5}-(\sqrt{5}+2)x=3-\sqrt{5}-(\sqrt{5}+2).0=3-\sqrt{5}$
Lấy phương trình (2) trừ phương trình (1), vế trừ vế ta được:
Vậy hệ phương trình có nghiệm duy nhất
Lưu ý:
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
Đặt 2 pt lần lượt là (1) và (2) nhé.
Bình phương (1) được: (x+3)^2 + (y-2)^2 + 2*|(x+3)(y-2)| = 25 <=> (x+3)^2 + (y-2)^2 + 2*6 =25
<=> (x+3)^2 + (y-2)^2 = 25- 12 = 13
Ta có HPT:
(x+3)(y-2)= -6 (2) => 2*(x+3)(y-2) = -12 (4)
(x+3)^2 + (y-2)^2 = 13 (3) (x+3)^2 + (y-2)^2 = 13 (3)
~ Lấy (3) + (4) được: (x+3+y-2)^2 = 1 (hằng đẳng thức a^2+b^2 + 2ab)
=> ( x+y+1)^2 = 1
=> x+y= 0 hoặc x+y = -2
TH1: x+y=0 -> x= -y
Thay vào (2) được: (-y+3)(y-2)=-6 => (y-3)(y-2) = 6 => y^2 -5y + 6 = 6 => y^2 - 5y=0
=> y(y-5) = 0 => y=0 -> x= 0 hoặc y = 5 -> x= -5
TH2: x+y = -2 => x = -2 - y
Thay x= -2 - y vào (2) được: (-2 -y +3)(y-2) = -6 => ( -y + 1)(y-2) = -6 => (y-1)(y-2) = 6
=> y^2 - 3y + 2 = 6 -> y^2 - 3y - 4 =0
Giải pt này ra ( dạng đặc biệt a-b+c=0) được 2 nghiệm y1 = -1 -> x = -1 ; y2 = -c/a = 4 -> x = -6
Vậy hpt có 4 nghiệm: {x;y}= {0;0}, {-5; 5}, {-1; -1} , {-6; 4}
-----
Note: Nếu cách này có dài mong bạn thông cảm có thể tìm cách khác. Nếu có thì send massage cách đó cho mình học hỏi nhá. Phần kết luận bạn xem thứ tự x,y có đúng ko nha.
[ x + 3 + y - 2 = 5
[xy -2x + 3y- 6 = -6
{x + y = 4
{xy -2x + 3y = o
[x= 4 - y
[4y - y2 - 8 + 2y + 3y = 0
{x = 4 - y
{- y2 + 9y - 8 = 0 <=> a+b+c = -1 + 9 - 8 = 0 => y1 =1 ; y2 = 8
thay y ta có : x1 = 3 ; x2 = -4
Giải ra được y = 2 x =3 nha muốn biết cách giải ib mình dài lắm
Chúc bạn tìm ra lời giải !!!
\(\left(1\right)\Leftrightarrow\frac{x}{y}-\frac{y}{x}=\frac{5}{6}\Leftrightarrow\frac{x^2-y^2}{xy}=\frac{5}{6}\)
\(\Leftrightarrow6x^2-6y^2=5xy\)(3)
\(\left(2\right)\Leftrightarrow6x^2-6y^2=30\)(4)
Lấy (3) - (4) được 5xy - 30 = 0 <=> xy = 6
Thay vào (3) sẽ tìm đc hiệu x^2 và y^2 đưa về hệ ,auto làm nốt