K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

a) \(x3-2x+4=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

b) \(x3+x2+4=0\)

\(\Leftrightarrow5x+4=0\)

\(\Leftrightarrow5x=-4\)

\(\Leftrightarrow x=-\frac{4}{5}\)

a,3x-2x+4=0

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy -4 là nghiệm của đt .....

b,3x+2x+4=0

\(\Rightarrow\)5x=-4

\(\Rightarrow\)x=\(\frac{-4}{5}\)

Vậy \(\frac{-4}{5}\) là nghiệm của .....

Hok tốt

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

2 tháng 3 2023

a) `3x+5 =0`

`3x=-5`

`x=-5/3`

`b) -4x+8=0`

`-4x =-8`

`x=2`

`c) 3x -6=0`

`3x=6`

`x=2`

`d)x^2 +x =0`

`x(x+1) =0`

`=>[(x=0),(x=-1):}`

`e) x^2 -4 =0`

`x^2 =4`

`=> x = +-2`

`f) x^3 -27 =0`

`x^3 =27`

`=> x=3`

`g) 3x^2 +4 =0`

`3x^2 =-4`

`x^2 =-4/3(vô-lí)`

=> Đa thức ko có nghiệm

h) `x^3 -4x =0`

`x(x^2 -4) =0`

`=>[(x=0),(x^2=4 => x=+-2):}`

i) `2x^3 -32x =0`

`2x(x^2 -16)=0`

`=>[(2x=0),(x^2=16):}`

`=>[(x=0),(x=+-4):}`

5 tháng 4 2022

cho M(x) =0

\(=>x^3-25x=0=>x\left(x^2-25\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=25=>\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\end{matrix}\right.\)

5 tháng 4 2022

M(x) =0

\(=>x^5+27x^2=0=>x^2\left(x^3+27\right)=0\)

\(=>\left[{}\begin{matrix}x^2=0\\x^3=-27\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

24 tháng 4 2022

giúp em ạ

 

24 tháng 4 2022

a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4

            = 2x- 5x3  + x2 - 3x + 5 - 4

            = -3x3 + x2 - 3x + 1

    B(x) = -3x4 - x3 + 2x+ 2x + x4 - 4 - x2

            = -3x+ x4 - x3 + 2x- x+ 2x - 4

            = -2x4 - x3 + x2 + 2x - 4

b) 

H(x) = A(x) - B(x)

H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)

        = -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4

        = 2x4 - 3x+ x3 + x2 - x - 3x - 2x + 1 + 4

        = 2x4 - 2x3 -5x + 5

14 tháng 9 2019

c. Ta có f(x) + g(x)

=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1

Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1

Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)

24 tháng 9 2021

\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)

a: f(x)=x^3-2x^2+2x-5

g(x)=-x^3+3x^2-2x+4

b: Sửa đề: h(x)=f(x)+g(x)

h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1

c: h(x)=0

=>x^2-1=0

=>x=1 hoặc x=-1

18 tháng 7 2018

a: K(x)=0

=>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: K(x)=0

=>x(2x-5)(x+3)=0

=>x=0 hoặc 2x-5=0 hoặc x+3=0

=>x=0;x=5/2;x=-3

c: K(x)=0

=>x(x^2+4)(2x+1)=0

=>x(2x+1)=0

=>x=0 hoặc x=-1/2

d: G(x)=0

=>(x-3)(x+3)=0

=>x=3 hoặc x=-3

e: G(x)=0

=>x(x^2-25)=0

=>x(x-5)(x+5)=0

=>x=0;x=5;x=-5

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ