Cho \(\Delta ABC\)vuông tại A đường cao AH.Tia phân giác \(\widehat{ABC}\)cắt AH và AC lần lượt tại E và F.
a,Chứng minh \(\Delta ABC\)đồng dạng \(\Delta HBA\). Từ đó suy AB2 = BH.BC
b,Chứng minh \(\frac{EH}{AE}\)=\(\frac{FA}{FC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
hay \(AB^2=HB\cdot BC\)
b: \(\widehat{BMH}+\widehat{HBM}=90^0\)
\(\widehat{BNA}+\widehat{ABN}=90^0\)
mà \(\widehat{ABN}=\widehat{HBM}\)
nên \(\widehat{BMH}=\widehat{BNA}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC=36
=>HA=6cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔBAC có BF là phân giác
nên AF/AB=CF/CB
=>AF*CB=AB*CF
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔCHA\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)
Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)
c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)
nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)
Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)
hay KI//AC(Định lí Ta lét đảo)
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)