-2/x = -8/y
và -3x + 4y =-182 tìm xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: 5x=-4y
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
mà x+y=45
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)
Do đó: x=180; y=-225
b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)
mà -3x-2y=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)
Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Ta có :
3x + 4y - xy = 15
=> (4 - x)(y - 3) = 3 = 1 . 3 = 3 . 1 = (-1) . (-3) = (-3) . (-1)
Xét các trường hợp trên là ra
Nếu x,y thuộc Z
suy ra phương trình tương đương với y(4-x)-3(4-x)=15-12
suy ra (4-x)(y-3)=3
Xét các trường hợp
4-x=1 thì y-3=3
4-x=-1 thì y-3= -3
4-x =3 thì y-3=1
4-x= -3 thì y-3= -1
giải các trường hợp ra tìm x và y
3x + 4y - xy = 16
=> 3x - xy + 4y - 12 = 16 -12
=> x.(3 - y) - 4 .(3 - y) = 4
=> (x - 4).(3 - y) = 4
Vì x, y nguyên nên x- 4 và 3 - y thuộc Ư(4) = {4;-4;2;-2;1;-1}
Nếu x - 4 = 4 thì 3 - y = 1 => x = 8 và y = 2
trường hợp còn lại làm tương tự
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
a, xy+5x+y=4
\(\Rightarrow\) xy+5x+y+5=4+5=9
\(\Rightarrow x\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(y+5\right)\left(x+1\right)=9\)
Do x,y nguyên nên ta có bảng sau
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -6 | -2 | 0 | 2 | 8 |
y | 4 | -8 | -14 | 4 | -2 | -4 |
Điều kiện x, y nguyên | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy các cặp số nguyên (x;y) thỏa mãn đề bài là ( -10 ;4);(-6;-8);(-2;-14)(0;4);(2;-2);(8;-4)
Câu b tương tự nhé
Mà thôi đang rảnh t giúp luôn câu b nhé:
xy-3x+4y=15
\(\Rightarrow xy-3x+4y-3.4=15-12\)
\(\Rightarrow\left(xy+4y\right)-\left(3x+3.4\right)=3\)
\(\Rightarrow y\left(x+4\right)-3\left(x+4\right)=3\)
\(\Rightarrow\left(y-3\right)\left(x+4\right)=3\)
Đến đay bạn tự làm nốt nhé
Học tốt
x+y-y=6. còn 1 chục giữ nguyên sau đó lấy 3+4-1 là ra 6 sau đó lấy 6 ghép với 6 thì bằng66.66+16=82
a) \(xy+3x+y=8\)
\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)
Ta xét các TH sau:
+ \(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)
+ \(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)
a. xy + 3x + y = 8
=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11
=> ( x + 1 ) ( y + 3 ) = 11
x + 1 | y + 3 | x | y |
11 | 1 | 10 | - 2 |
1 | 11 | 0 | 8 |
- 11 | - 1 | - 12 | - 4 |
- 1 | - 11 | - 2 | - 14 |
Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )
b. Không rõ đề
Ta có: \(\dfrac{-2}{x}=\dfrac{-8}{y}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{8}=\dfrac{-3x+4y}{-3\cdot2+4\cdot8}=\dfrac{-182}{26}=-7\)
Do đó: x=-14; y=-56
thank