bt bổ sung : 1 công vc nếu giao cho 2 đội công nhân làm riêng tốn thời gian tổng cộng là 20h. nếu lm chung thì hoàn thành công vc trong 4h 48 phút. hỏi mỗi đội lm riêng thì hoàn thành công vc trong bao lâu.
Giúp mình. Cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hoàn thành 1 công việc, 2 tổ làm chung trong vòng 6h
--> Trong 1 giờ, 2 tổ làm chung được 1/6 công việc.
--> Sau 2h làm chung, số phần công việc đã hoàn thành là 2/6 công việc-->Số công việc còn lại là 1 - 2/6 =2/3 công việc
Để làm xong 2/3 công việc còn lại, tổ 1 đã mất 10h, vậy số phần công việc mà tổ 1 làm độc lập trong 1 giờ là: 2/3 : 10 =1/15 công việc--> Nếu làm riêng thì tổ 1 sẽ mất 15h để hoàn thảnh cả công việc.
Trong 1 h, 2 tổ làm chung được 1/6 công việc nhưng trong 1/6 công việc làm được đó tổ 1 đã làm 1/15 công việc--> Nếu làm độc lập thì trong 1 h tổ 2 sẽ hoàn thành: 1/6 - 1/15 = 1/10 công việc
--> Nếu làm riêng thì tổ 2 sẽ mất 10 h để hoàn thành cả công việc.
Gọi số phần công việc tổ 1 làm đc trong 1h là x phần
=> làm 1 mình tổ 1 cần 1/x giờ để làm xong công việc.
Gọi số phần công việc tổ 2 làm đc trong 1h là y phần
=> làm 1 mình tổ 2 cần 1/y giờ để làm xong công việc.
Sau 6h 2 tổ làm chung thì xong công việc
=> 6x+ 6y =1
Sau 2h làm chung thì tổ 1 làm 1 mình 10h thì xong công việc
=> 2(x+y) + 10x = 12x +2y=1
Ta có hệ phương trình sau :
6x+ 6y =1
12x +2y=1
Giải hệ trên ra x=1/15
y=1/10
=> thời gian tổ 1 làm 1 mình xong công việc là 1/x= 15h.
thời gian tổ 2 làm 1 mình xong công việc là 1/y= 10h.
đổi 2 giờ 40 phút=\(\dfrac{8}{3}\) giờ
gọi thời gian đội 1 và đội 2 làm riêng để hoàn thành công việc lần lượt là
x,y(x,y>\(\dfrac{8}{3}\) )
=>hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{8}{3}}=\dfrac{3}{8}\\y-x=4\end{matrix}\right.\) giải hệ pt trên ta được \(\left\{{}\begin{matrix}x=4\left(TM\right)\\y=8\left(TM\right)\end{matrix}\right.\)
vậy nếu làm riêng để hoàn thành công việc thì đội thứ nhất hết 4 giờ
đội thứ 2 hết 8 giờ
Bài giải:
Chiều rộng hình chữ nhật là:
12 : 4 = 3 ( dm)
Chu vi mảnh tấm bìa đó là:
( 12 + 3 ) x 2 = 30 ( dm)
Đáp số: 30dm.
Gọi x ( giờ ) là thời gian đội 1 làm một mình xong công việc ( x > 12 )
Thời gian đội thứ 2 làm một mình xong công việc là : \(x-7\left(giờ\right)\)
Trong một giờ đội 1 làm được \(\dfrac{1}{x}\left(\text{công việc}\right)\)
Trong một giờ đội 2 làm được \(\dfrac{1}{x-7}\left(\text{công việc}\right)\)
Trong một giờ cả hai đội làm được \(\dfrac{1}{12}\left(\text{công việc}\right)\)
Theo bài ra ta có pt : \(\dfrac{1}{x}+\dfrac{1}{x-7}=\dfrac{1}{12}\Leftrightarrow12\left(x-7\right)+12x=x\left(x-7\right)\Leftrightarrow x^2-31x+84=0\Leftrightarrow\left\{{}\begin{matrix}x=28\left(N\right)\\x=3\left(L\right)\end{matrix}\right.\)
Vậy thời gian đội 1 làm xong công việc là 8 giờ , thời gian đội 2 làm xong công việc là : \(28-7=21\left(giờ\right)\)
Gọi thời gian máy 1 làm một mình xong công việc là x (x>10)
Gọi thời gian máy 2 làm một mình xong công việc là y (y>10)
Trong 1 giờ:
-Máy 1 làm một mình được \(\dfrac{1}{x}\) công việc
-Máy 2 làm một mình được \(\dfrac{1}{y}\) công viêc
-Cả hai máy làm được \(\dfrac{1}{10}\) công viêc
⇒PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{10}\) (1)
-Nếu máy 1 làm trong 6 giờ, máy 2 làm trong 3 giờ thì mới làm được 40% công việc nên ta có pt: \(\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{5}\) (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{10}\\\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\)
Giải hệ ta được \(\left\{{}\begin{matrix}x=30\\y=15\end{matrix}\right.\)
Vậy mày 1 làm xong công việc trong 30 giờ
Vậy máy 2 làm xong công việc trong 15 giờ
Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)
Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc
Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:
\(x-y=10\) (1)
Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:
\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)
Thế pt trên xuống pt dưới:
\(12\left(x+x-10\right)=x\left(x-10\right)\)
\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y=x-10=20\)
Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày
Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)
(Điều kiện: x>10)
Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)
Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)
Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)
Do đó, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)
=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)
=>\(x\left(x-10\right)=12\left(2x-10\right)\)
=>\(x^2-10x=24x-120\)
=>\(x^2-34x+120=0\)
=>(x-30)(x-4)=0
=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày
Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày
Gọi x (giờ) là thời gian đội I làm một mình xong công việc (x > 12)
Thời gian đội thứ II làm một mình xong công việc là: x – 7 (giờ)
Trong một giờ đội I làm được 1/x (công việc)
Trong một giờ đội II làm được 1/(x-7) (công việc)
Trong một giờ cả hai đội làm được 1/12 (công việc)
Theo bài ra ta có phương trình:
Vậy thời gian đội I làm xong công việc là 28 giờ, thời gian đội II làm xong công việc là: 28 – 7 = 21 (giờ)
Đáp án: C
- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )
- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )
- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )
=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )
Mà nếu làm chung 8 ngày sẽ xong công việc .
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)
- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .
\(\Rightarrow-x+y=12\left(II\right)\)
- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )
Vậy ...
Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)
=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12 (ngày)
Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)
Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)
Theo bài ta có
\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)
\(\Leftrightarrow16a+96=a^2+12a\)
\(\Leftrightarrow a^2-4a-96=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)
Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày
Gọi x ( h ) là thời gian đội 1 làm riêng hết công vc \(\left(4,8< x< 20\right)\)
=> thời gian đội 2 làm riêng hết công vc là 20 - x ( h)
+ 1 giờ, đội 1 làm đc: \(1:x=\frac{1}{x}\) ( công vc )
+ 1 giờ, đội 2 lm đc : \(1:\left(20-x\right)=\frac{1}{20-x}\) ( cv )
4 h 48 ph = 4,8 h
+ 1 giờ cả 2 đội lm đc: \(1:\frac{24}{5}=\frac{5}{24}\) ( cv )
+ Ta có pt : \(\frac{1}{x}+\frac{1}{20-x}=\frac{5}{24}\)
\(\Leftrightarrow\frac{20}{x\left(20-x\right)}=\frac{5}{24}\)
\(\Leftrightarrow5x\left(20-x\right)=20\cdot24\)
\(\Leftrightarrow100x-5x^2=480\)
\(\Leftrightarrow5x^2-100x+480=0\)
\(\Leftrightarrow5\left(x-8\right)\left(x-12\right)=0\)
Đến đây bn tự tính nha!