K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

\(C=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow Cx^2-5Cx+7C=x^2\)

\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)

Để phương trình có nghiệm thì

\(\Delta=25C^2-4.7C.\left(C-1\right)=-3C^2+28C\ge0\)

\(\Leftrightarrow0\le C\le\frac{28}{3}\)

Vậy GTNN là 0 và GTLN là \(\frac{28}{3}\)

31 tháng 12 2016

\(C=\frac{x^2}{x^2-5x+7}=\frac{1}{\frac{7}{x^2}-\frac{5}{x}+1}=\frac{1}{7t^2-5t+1}\) với \(t=\frac{1}{x}\) (Xét với \(x\ne0\))

Tới đây dễ dàng giải tiếp.

2 tháng 7 2018

a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)

\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)

\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

Vậy x = 3

b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)

                            \(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)

                             \(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)

                              \(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)

                             \(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)

Vậy x = 2

2 tháng 7 2018

bài này sử dụng tích chéo nha bạn

18 tháng 8 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

23 tháng 12 2017

a) MIN : \(y=\frac{\frac{1}{3}x^2+\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}=\frac{\frac{1}{3}\left(x^2+x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2+x+1}\)

\(=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)

MAX : \(y=\frac{3x^2+3x+3-2x^2-4x-2}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2\left(x^2+2x+1\right)}{x^2+x+1}\)

\(=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

b ) tương tự

25 tháng 12 2017

bạn ơi giải như thế không đúng vs lại dấu bằng không xảy ra

5 tháng 10 2017

\(S=\sqrt{x-1}+\sqrt{2x^2-5x+7}\)

\(\Rightarrow S^2=2x^2-4x+6+2\sqrt{x-1.2x^2-5x+7}\)

\(=2.x-1^2+4+2\sqrt{x-1.2x^2+5x-7}\ge4\)

\(Min_A=4\Leftrightarrow x=1\)

Vậy: \(x=1\)

P/s: Đúng ko nhỉ?

5 tháng 10 2017

bạn ơ\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)i  sao ra cai do vay