a/ \(x\frac{2}{x}\)=\(\frac{12597}{1729}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{a}=\frac{12597}{1729}\Rightarrow2:\frac{12597}{1729}=\frac{14}{51}=a\)
x:28584+1729=1735
x:28584 =1735-1729
x:28584 =6
x=28584x6
x=171504
x : 28 584 + 1 729 = 1 735
x : 28 584 = 1 735 - 1 729
x : 28 584 = 6
x = 6 x 28 584
x = 171 504
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
Bạn chỉ cần bình phương PT x/a + y/b + z/c
và chỉ ra ayz + bxz + cxy = 0 ở PT 2 là xong
:D
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow(\frac{x}{a}+\frac{y}{b}+\frac{z}{c})^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1-2\frac{ayz+bxz+cxy}{abc}=1-2\cdot0=1(đpcm)\)
\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\) (ĐKXĐ: x \(\ne\) 0 và x \(\ne\) a + b)
<=> \(\frac{1}{a+b-x}+\frac{1}{x}-\frac{1}{a}-\frac{1}{b}=0\)
<=> \(\frac{x}{x\left(a+b-x\right)}+\frac{a+b-x}{x\left(a+b-x\right)}-\frac{b}{ab}-\frac{a}{ab}\)
<=> \(\frac{a+b}{x\left(a+b-x\right)}-\frac{a+b}{ab}=0\)
<=> \(\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\)
* Nếu a = - b thì tập nghiệm cuả pt là S = R
* Nếu a \(\ne\) b thì \(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}=0\)
<=> \(\frac{ab}{abx\left(a+b-x\right)}-\frac{x\left(a+b-x\right)}{abx\left(a+b-x\right)}=0\)
<=> \(\frac{ab-\text{ax}-bx+x^2}{abx\left(a+b-x\right)}=0\)
<=> \(\frac{b\left(a-x\right)-x\left(a-x\right)}{abx\left(a+b-x\right)}=0\)
<=> \(\frac{\left(a-x\right)\left(b-x\right)}{abx\left(a+b-x\right)}=0\)
<=> \(\left[\begin{matrix}a-x=0\\b-x=0\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=a\\x=b\end{matrix}\right.\)
Vậy tập nghiệm của pt là S = {a ; b}
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (ĐKXĐ: x \(\ne\) 0
<=> \(\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}-\frac{x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2-x+1\right)\left(x^2+x+1\right)}=\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
=> \(\left(x^4+x\right)-\left(x^4-x\right)=3\)
<=> \(2x-3=0\)
<=> \(x=\frac{3}{2}\) (nhận)
Vậy S = {1,5}