K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

P N M H K I Q

GT

 △MNP cân tại P.   MN = 6cm,   NPI = MPI = NPM/2 ,  (I \in  MN)

 IK ⊥ PM ,  IH ⊥ PN . IQ = IM 

KL

 a, △MPI = △NPI

 b, HIP = PIK

 c, △MIQ vuông cân. MQ = ?

 d, Nếu PKH đều, điều kiện △MNP

Bài làm:

a,  Vì △MNP cân tại P => PN = PM

Xét △NPI và △MPI

Có: NP = MP (gt)

      NPI = MPI (gt)

    PI là cạnh chung

=> △NPI = △MPI (c.g.c)

b, Xét △HPI vuông tại H và △KPI vuông tại K

Có: PI là cạnh chung

   HPI = KPI (gt)

=> △HPI = △KPI (ch-gn)

=> HIP = PIK (2 góc tương ứng)

Mà IP nằm giữa IH, IK

=> IP là phân giác KIH

c, Ta có: PIN = MIQ (2 góc đối đỉnh)

Mà PIN = 90o (gt)

=> MIQ = 90o    (1) 

Xét △MIQ có: IQ = IM => △MIQ cân tại I   (2)

Từ (1), (2) => △MIQ vuông cân tại I

Vì △NPI = △MPI (cmt) 

=> IN = IM (2 cạnh tương ứng)

Mà MN = IN + IM = 6 (cm)

=> IN = IM = 6 : 2 = 3 (cm)

Mà IM = IQ 

=> IM = IQ = 3 (cm)

Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)

=> 32 + 32 = MQ2

=> 9 + 9 = MQ2

=> 18 = MQ2

=> MQ = \(\sqrt{18}=3\sqrt{2}\)

d, Để △PHK đều <=> HPK = PKH = KHP = 60o

=> △MNP có NPM = 60o mà △MNP cân

=> △MNP đều

Vậy để △PKH đều <=> △MNP đều

29 tháng 2 2016

giúp vs mình cần gấp :(((

a: PN=10cm

b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có

PK chung

\(\widehat{MPK}=\widehat{EPK}\)

Do đó: ΔPMK=ΔPEK

c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có

KM=KE

\(\widehat{MKD}=\widehat{EKN}\)

DO đó: ΔMKD=ΔEKN

Suy ra: KD=KN

d: Ta có: PM+MD=PD

PE+EN=PN

mà PM=PE

và MD=EN

nên PD=PN

hayΔPDN cân tại P

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân

 

 

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔNMA và ΔNPB có 

NM=NP

\(\widehat{NMA}=\widehat{NPB}\)

MA=PB

Do đó: ΔNMA=ΔNPB

Suy ra: NA=NB

hay ΔNAB cân tại N

b: Xét ΔNHM vuông tại H và ΔNKP vuông tại K có

NM=NP

\(\widehat{HNM}=\widehat{KNP}\)

Do đó: ΔNHM=ΔNKP

Suy ra: MH=PK