cho 4 số a,b,c,d sao cho ab=1,ac+bd=2.chứng minh rằng 1-cd không thể là số âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: ab=2; ac+ bd = 2
=> ab+cd=2=>2-ab=cd=1
vậy 1-cd=0 thì ko phải là số âm
\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)
\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)
\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)
\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)
Ta có
\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)
\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)
Thay (1) vào (2)
\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)
Do \(a>b>c>d\)
\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)
\(\Leftrightarrow ab+cd>ac+bd\) (4)
Và
\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)
\(\Leftrightarrow ac+bd>ad+bc\) (5)
Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\)
Ta có
(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)
Vế trái là số nguyên => vế phải cũng phải là số nguyên
Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)
\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd
=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố
mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
Mình chỉ giải được câu 1 thôi nhé!
Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:
abc+ ( 2a+3b+c)= a.100+b.10+c+2a+3b+c
= a.98+7.b
Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7
=> abc+ ( 2a+3b+c) chia hết cho 7
Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)