K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

 

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

24 tháng 10 2016

+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có : 

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)

Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.

+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

4 tháng 2 2018

Để hàm số đồng biến với mọi x > 0 thì a > 0

nên 4 – 3m > 0 ⇔ 4 > 3m

⇔ 3m < 4  ⇔ m < 4 3

Vậy m < 4 3  thỏa mãn điều kiện đề bài

Đáp án cần chọn là: C

22 tháng 3 2022

a, Để hàm số đồng biến thì:

`2-9m>0⇔9m<2⇔m<2/9`

a, Để hàm số nghịch biến thì:

`2-9m<0⇔9m>2⇔m>2/9`

1 tháng 6 2019

\(\left(m^2-4m+5\right)x^2\)

\(m^2-4m+5=m^2-2\cdot m\cdot2+2^2+1=\left(m-2\right)^2+1>0\)với mọi m

=> \(a>0\)

Do đóhàm số nghịch biến khi x<0 và đồng biến khi x>0