K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

hình tự vẽ nha!

a) Ta có: OB=OA=AB=R nên ΔOAB đều.

b) ta có góc BMC=90⇒góc BMD=90 (kề bù)

xét ΔBMD có: \(\widehat{MBD}+\widehat{MDB}=90^O\)

do đó \(\widehat{MDB}\) = \(\widehat{AIB}\)

Vậy tứ giác AIMD nội tiếp đường tròn đường kính DI

c) ta có \(\widehat{ADI}=\widehat{AMI}\) (2 góc nội tiếp cùng chắn cung AI của đường tròn đường kính DI)

\(\widehat{AMB}=\widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung AB của đường tròn tâm O)

ΔABC vuông tại A, có \(\widehat{ABC}\)=60o\(\widehat{ACB}\) =30o

Vậy \(\widehat{ADI}\) =30o

d) vì \(\widehat{ABM}\) = 45o⇒ΔDMB vuông cân tại M. ta tính được MB= 2R.sin75o

⇒DB⇒AD=BD - AB

a: góc CAB=góc CMB=1/2*180=90 độ

=>CA vuông góc DB và BM vuông góc DC

góc DAI+góc DMI=180 độ

=>DAIM nội tiếp

b: Sửa đề: AI*IC=BI*IM

Xét ΔIAB vuông tại A và ΔIMC vuông tại M có

góc AIB=góc MIC

=>ΔIAB đồng dạng với ΔIMC

=>IA/IM=IB/IC

=>IA*IC=IM*IB

c: góc ADI=90 độ-góc DBC

góc ACB=90 độ-góc DBC

=>góc ADI=góc ACB=1/2*góc AOB

a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2

nên ΔOAC vuôg cân tại O

b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)

c: ΔOAC vuông cân tại O

=>góc BAC=45 độ

 

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400a) Tính góc AOBb) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cânBài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba...
Đọc tiếp

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400

a) Tính góc AOB

b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân

Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D

a) chứng minh : Tam giác COD là tam giác vuông

b)Chứng minh : MC.MD=OM2

c) Cho biết OC=BA=2R, tính AC và BD theo R

Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N

a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP

b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân

1

Bài 2:

a: Xét (O) có

CM,CA là tiếp tuyến

nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b:

Xét ΔCOD vuông tại O có OM là đường cao

nên MC*MD=OM^2

c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

 

7 tháng 7 2018

B C O A D d M K E N I H F P d'

1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900

=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:

^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).

2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900

=> BM vuông góc CE. Xét \(\Delta\)BEC:

BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC

=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).

3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.

Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)

Tương tự: ^NBK = ^NDK     (2)

Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN

Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)

Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)

Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH

=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF

Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)

Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:

^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)

=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)

Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)

Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)

\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900

=> ^DBF + ^DCH = 900 => CH vuông góc BF.

Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB

=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900

=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)

=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP

Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800

=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn

=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.

Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB

=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)

=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP

Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP

=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)

I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d

OC vuông góc d => OC // IF (8)

Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))

=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)

=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)

Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.

22 tháng 5 2018
bạn giải ra chưa? giúp mình câu 3 với
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0