Cho A = 1x,59 + 5,y7
B = x,y + 15,66
So sánh A và B
Ai nhanh và có lời giải mik tick 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
suy ra 3x-3-x-5=-18
(3x-x)-(3+5)=-18
2x-8=-18
2x=-18+8
2x=-10
x=-10/2
x=-5
A)\(\left|x+1\right|+\left|x+1\right|=2\)
\(\Rightarrow2.\left|x+1\right|=2\)
\(\Rightarrow\left|x+1\right|=2:2\)
\(\Rightarrow\left|x+1\right|=1\)
\(\Rightarrow x+1=1\) hoặc \(x+1=-1\)
1)x+1=1 2)x+1=-1
\(\Rightarrow x=1-1\) \(\Rightarrow x=-1-1\)
\(\Rightarrow x=0\) \(\Rightarrow x=-2\)
Vậy \(x\in\left\{0;-2\right\}\)
b) x-[-x+(x+3)]-[(x+3)-(x-2)]=0
\(\Rightarrow x-\left[-x+x+3\right]-\left[x+3-x+2\right]=0\)
\(\Rightarrow x-3-5=0\)
\(\Rightarrow x=0+3+5\)
\(\Rightarrow x=8\)
Vậy x=8
c)\(\left(3x+1\right)^2+\left|y-5\right|=1\)
+)Giả sử 3x+1 là số âm
\(\Rightarrow\left(3x+1\right)^2\)là số dương(1)
+)Lại giả sử 3x+1 là số dương
\(\Rightarrow\left(3x+1\right)^2\)là số dương(2)
+)Từ (1) và (2)
\(\Rightarrow\left(3x+1\right)^2\)nguyên dương với mọi x
+)Ta có:\(\left(3x+1\right)^2\ge0;\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+1\right)^2=1;\left|y-5\right|=0\)
\(\Rightarrow x=0;y=5\)
+)Ta lại có:\(\left(3x+1\right)^2\ge0;\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+1\right)^2=0;\left|y-5\right|=1\)
\(\Rightarrow x=\frac{-1}{3};y\in\left\{6;4\right\}\)
Mà \(\left(x,y\right)\in Z\)
\(\Rightarrow x=0;y=5\)
Đề bạn thiếu x,y thuộc Z đó
Chúc bn học tốt
Sửa đề nhé , đề sai :
\(\text{Ta có : }A=b\left(a-c\right)-c\left(a+b\right)\)
\(\Leftrightarrow A=ba-bc-ca-cb\)
\(\Leftrightarrow A=ab-ca\)
\(\Leftrightarrow A=a\left(b-c\right)\)
\(\Leftrightarrow A=\left(-20\right)\left(-5\right)\)
\(\Rightarrow A=100\)
A = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+..+9\right)}{1\times2+2\times3+3\times4+...+19\times20}\)
\(=\frac{\frac{1\times\left(1+1\right)}{2}+\frac{2\times\left(2+1\right)}{2}+\frac{3\times\left(3+1\right)}{2}...+\frac{9\times\left(9+1\right)}{2}}{1\times2+2\times3+3\times4+...+19\times20}\)
\(=\frac{\frac{1\times2}{2}+\frac{2\times3}{2}+\frac{3\times4}{2}+...+\frac{9\times10}{2}}{1\times2+2\times3+3\times4+...+9\times10}\)
\(=\frac{\frac{1}{2}\times\left(1\times2+2\times3+3\times4+...+9\times10\right)}{1\times2+2\times3+3\times4+...+9\times10}=\frac{\frac{1}{2}}{1}=\frac{1}{2}\)
Ta có:
\(A=\frac{67^{2016}}{67^{2016}-11}=1+\frac{11}{67^{2016}-11}\)
\(B=\frac{67^{2016}+13}{67^{2016}+2}=1+\frac{11}{67^{2016}+2}\)
Vì \(67^{2016}-11< 67^{2016}+2\) nên \(\frac{11}{67^{2016}-11}>\frac{11}{67^{2016}+2}\Rightarrow1+\frac{11}{67^{2016}-11}>1+\frac{11}{67^{2016}+2}\)
Vậy A > B
\(A=\frac{67^{2016}}{67^{2016}}-11=1-11=-10< 0\)
\(\Rightarrow A< 0\)
\(B=\frac{67^{2016}+3}{67^{2016}+2}>0\)
\(\Rightarrow B>0\)
Vậy \(B>A\)