K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

\(|x^{2018}+|x-1||=x^{2018}+2404\)

\(\Leftrightarrow\orbr{\begin{cases}x^{2018}+|x-1|=-x^{2018}-2404\\x^{2018}+|x-1|=x^{2018}+2404\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-\left(2x^{2018}+2404\right)\left(l\right)\\|x-1|=2404\left(n\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=-2404\\x-1=2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2403\\x=2405\end{cases}}}\)

V...

20 tháng 3 2019

\(\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)

Ta thấy: \(x^{2018}\ge0\);\(\left|x-1\right|\ge0\)\(\Rightarrow x^{2018}+\left|x-1\right|\ge0\)

\(\Rightarrow\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)

   \(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\) 

                          \(\left|x-1\right|=2404\)

\(\Rightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}}\Rightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}\)

             Vậy \(x\in\left\{2405;-2403\right\}\)

    

7 tháng 5 2018

Vì : (3x+1)2018+(2y-1)2018+\(\left|x+2y-z\right|\)2018=0

Nên: \(\left\{{}\begin{matrix}\left(3x+1\right)^{2018}=0\\\left(2y-1\right)^{2018}\\\left|x+2y-z\right|^{2018}=0\end{matrix}\right.=0\)\(\left\{{}\begin{matrix}3x+1=0\\2y-1=0\\x+2y-z=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\\dfrac{-1}{3}+1-z=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\z=\dfrac{2}{3}\end{matrix}\right.\)

Vậy : x=\(\dfrac{-1}{3}\) ; y=\(\dfrac{1}{2}\) ; z=\(\dfrac{2}{3}\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
\(\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\frac{(x^2+x+1)^{2018}-3^{2018}+(x+2)^{2018}-3^{2018}}{(x-1)(x+2017)}\)

\(=\frac{(x^2+x-2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x-1)[(x+2)^{2017}+...+3^{2017}]}{(x-1)(x+2017)}\)

\(=\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)

Do đó:

\(\lim_{x\to 1}\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\lim_{x\to 1}\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)

\(=\frac{3\underbrace{(3^{2017}+3^{2017}+...+3^{2017})}_{2018}+\underbrace{3^{2017}+...+3^{2017}}_{2018}}{1+2017}\)

\(=\frac{3.2018.3^{2017}+2018.3^{2017}}{2018}=3^{2018}+3^{2017}=3^{2017}.4\)

13 tháng 8 2019

khá dài đó đợi chút nha

13 tháng 8 2019

\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)

Ta có: \(2017-x=0\Leftrightarrow x=2017\)

          \(2018-x=0\Leftrightarrow x=2018\)

          \(2019-x=0\Leftrightarrow x=2019\)

Lập bảng xét dấu : 

2017-x 2018-x 2019-x 2017 2018 2019 0 0 0 - - - - - - + + + + + +

+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)

Thay (2) vào(1) ta được : 

\(2017-x+2018-x+2019-x=2\)

\(6054-3x=2\)

\(3x=6052\)

\(x=\frac{6052}{3}>2017\)( loại )

+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(x-2017+2018-x+2019-x=2\)

\(2020-x=2\)

\(x=2018\)( chọn )

+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(x-2017+x-2018+2019-x=2\)

\(x-2016=2\)

\(x=2018\)( loại )

+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)

Thay (5) vào (1) ta được :

\(x-2017+x-2018+x-2019=2\)

\(3x-6054=2\)

\(3x=6056\)

\(x=\frac{6056}{3}< 2019\)( loại )

Vậy x=2018

NV
16 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)

13 tháng 3 2018

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)