K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :

\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)

\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)

\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)

\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)

\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)

\(a;b\ge c\Rightarrow a=b=2c\)

Vậy ...

NV
19 tháng 3 2019

BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng BĐT Cauchy:

\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=2c\)

5 tháng 12 2021

Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)

               \(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)

               \(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)

               \(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)

Dấu "=" xảy ra ⇔ a=b=1

NV
14 tháng 5 2021

\(P=a^2-2a+b^2-2b+c^2-2c+3\)

\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)

14 tháng 5 2021

Anh ;-; em chưa kịp làm :|

24 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\)

Vì a ; b là các số dương nên chia cả 2 vế cho a;b ta được \(\frac{a}{b}+\frac{b}{a}\ge2\)

Đẳng thức xảy ra khi a = b

..

24 tháng 3 2019

Ta có :\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\left(1\right)\)

Mà \(\left(a+b\right)^2>0\Rightarrow a^2+2ab+b^2>0\)

\(\Rightarrow a^2+b^2>2ab\)

\(\Rightarrow\frac{a^2+b^2}{ab}>\frac{2ab}{ab}\)

\(\Rightarrow\frac{a^2+b^2}{ab}>2\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}+\frac{b}{a}>2\left(đpcm\right)\)

chúc bạn hok tốt

#include <bits/stdc++.h>

using namespace std;

long long a[100],i,n,t,x,k;

int main()

{

cin>>n;

for (i=1; i<=n; i++)

cin>>a[i];

t=0;

for (i=1;i<=n; i++)

if (a[i]>0) t+=a[i];

cout<<t<<endl;

cin>>x>>k;

a[0]=x;

sort(a[k],a[0]);

for (i=0; i<=n; i++)

cout<<a[i]<<" ";

cout<<endl;

for (i=0; i<=n; i++)

if (a[i]<=0) cout<<a[i]<<" ";

return 0;

}

29 tháng 5 2019

Dặt x=a, y=2b,z=3c

Khi đó

\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1

Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)

                                                                                                                     \(=\frac{1}{2}\)

Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)

9 tháng 7 2021

Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.

=> Có 2 trường hợp:

TH1: a^2+a=b^2+b và a=b

⇒a=b(đpcm)

TH2: a^2+a=b và a=b^2+b

Trừ theo vế cho nhau, ta được:

a^2+a−a=b−(b^2+b)

⇒a^2+a−a=b−b^2−b

⇒a^2=−b^2

⇒a^2+b^2=0

\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\Rightarrow a=b=0\)

Vậy a=b

Chúc bạn học tốt!

28 tháng 5 2018

Áp dụng Cosi Rồi áp dụng tiếp AM-GM là ra nhé :) Ko bt có đúng ko nx 

Mình làm 1 phần nhé ko phải dùng Cosi

Phân tích: \(x+y+\frac{1}{2x}+\frac{2}{y}\)\(=\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{x}{2}+\frac{1}{2x}\right)\)\(\ge2\sqrt{\left(\frac{x}{2}.\frac{1}{2}\right)}+2\sqrt{\left(\frac{y}{2}.\frac{2}{y}\right)}+\frac{3}{2}=\frac{9}{2}\)

\(\Rightarrow x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)

Đẳng thức xảy ra khi:

Ta có: \(\frac{x}{2}=\frac{1}{2x}\Rightarrow\left(2x.x\right)=\left(2.1\right)\Rightarrow2x^2.2\Rightarrow x=1\)( Thỏa mãn ) ( vì x là một số thực dương )

Ta có: \(\frac{y}{2}=\frac{2}{y}\Rightarrow\left(y.y\right)=\left(2.2\right)\Rightarrow y^2=4\Rightarrow y=2\)( thỏa mãn ) ( vì y là một số thực dương )

Mà: \(x+y=1+2=3\)( thỏa mãn đề bài \(x+y\ge3\))

Vậy đẳng thức \(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)khi x = 1 và y = 2 

12 tháng 5 2016

\(\left(a-1\right)^2+\left(b-2\right)^2=5\Leftrightarrow2a+4b=a^2+b^2\)

\(\left(a-2\right)^2+\left(b-4\right)^2\ge0\Rightarrow a^2+b^2\ge4a+8b-20\)

\(\Rightarrow2a+4b\ge4a+8b-20\)

\(\Leftrightarrow a+2b\le10\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

$12n1$ là như thế nào bạn nhỉ? Bạn cần viết lại đề để được hỗ trợ tốt hơn.