Cho các số thực dương a;b;c thỏa mãn: \(a\ge c;b\ge c\)
Chứng minh rằng:
\(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(a+b\right)\left(a^2-ab+b^2\right)+\dfrac{6}{a^2+b^2}+3ab\)
\(=2\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}+ab\)
\(=\left[\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{6}{a^2+b^2}\right]+\dfrac{a^2+b^2}{2}+ab\)
\(\ge2\sqrt{\dfrac{3}{2}\left(a^2+b^2\right).\dfrac{6}{a^2+b^2}}+\dfrac{\left(a+b\right)^2}{2}=2.3+\dfrac{2^2}{2}=8\)
Dấu "=" xảy ra ⇔ a=b=1
\(P=a^2-2a+b^2-2b+c^2-2c+3\)
\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)
\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)
\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\)
Vì a ; b là các số dương nên chia cả 2 vế cho a;b ta được \(\frac{a}{b}+\frac{b}{a}\ge2\)
Đẳng thức xảy ra khi a = b
..
Ta có :\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\left(1\right)\)
Mà \(\left(a+b\right)^2>0\Rightarrow a^2+2ab+b^2>0\)
\(\Rightarrow a^2+b^2>2ab\)
\(\Rightarrow\frac{a^2+b^2}{ab}>\frac{2ab}{ab}\)
\(\Rightarrow\frac{a^2+b^2}{ab}>2\)\(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}+\frac{b}{a}>2\left(đpcm\right)\)
chúc bạn hok tốt
#include <bits/stdc++.h>
using namespace std;
long long a[100],i,n,t,x,k;
int main()
{
cin>>n;
for (i=1; i<=n; i++)
cin>>a[i];
t=0;
for (i=1;i<=n; i++)
if (a[i]>0) t+=a[i];
cout<<t<<endl;
cin>>x>>k;
a[0]=x;
sort(a[k],a[0]);
for (i=0; i<=n; i++)
cout<<a[i]<<" ";
cout<<endl;
for (i=0; i<=n; i++)
if (a[i]<=0) cout<<a[i]<<" ";
return 0;
}
Dặt x=a, y=2b,z=3c
Khi đó
\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1
Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)
\(=\frac{1}{2}\)
Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)
Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.
=> Có 2 trường hợp:
TH1: a^2+a=b^2+b và a=b
⇒a=b(đpcm)
TH2: a^2+a=b và a=b^2+b
Trừ theo vế cho nhau, ta được:
a^2+a−a=b−(b^2+b)
⇒a^2+a−a=b−b^2−b
⇒a^2=−b^2
⇒a^2+b^2=0
\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\Rightarrow a=b=0\)
Vậy a=b
Chúc bạn học tốt!
Áp dụng Cosi Rồi áp dụng tiếp AM-GM là ra nhé :) Ko bt có đúng ko nx
Mình làm 1 phần nhé ko phải dùng Cosi
Phân tích: \(x+y+\frac{1}{2x}+\frac{2}{y}\)\(=\left(\frac{y}{2}+\frac{2}{y}\right)+\left(\frac{x}{2}+\frac{y}{2}\right)+\left(\frac{x}{2}+\frac{1}{2x}\right)\)\(\ge2\sqrt{\left(\frac{x}{2}.\frac{1}{2}\right)}+2\sqrt{\left(\frac{y}{2}.\frac{2}{y}\right)}+\frac{3}{2}=\frac{9}{2}\)
\(\Rightarrow x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)
Đẳng thức xảy ra khi:
Ta có: \(\frac{x}{2}=\frac{1}{2x}\Rightarrow\left(2x.x\right)=\left(2.1\right)\Rightarrow2x^2.2\Rightarrow x=1\)( Thỏa mãn ) ( vì x là một số thực dương )
Ta có: \(\frac{y}{2}=\frac{2}{y}\Rightarrow\left(y.y\right)=\left(2.2\right)\Rightarrow y^2=4\Rightarrow y=2\)( thỏa mãn ) ( vì y là một số thực dương )
Mà: \(x+y=1+2=3\)( thỏa mãn đề bài \(x+y\ge3\))
Vậy đẳng thức \(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\)khi x = 1 và y = 2
$12n1$ là như thế nào bạn nhỉ? Bạn cần viết lại đề để được hỗ trợ tốt hơn.
Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :
\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)
\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)
\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)
\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)
Vì \(a;b\ge c\Rightarrow a=b=2c\)
Vậy ...
BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng BĐT Cauchy:
\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=2c\)