GGiup mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ờ thì giúp tội tui ko tên thắng :))
Ta có: \(a+b+c=\sqrt{\left(a+b+c\right)^2}\)
\(=\sqrt{a^2+b^2+c^2+2ab+2bc+2ca}\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
Sau đó áp dụng BĐT AM-GM và Holder ta có:
\(Σ\dfrac{a^2}{\sqrt{3b^2+bc}}=Σ\dfrac{4a^2}{2\sqrt{4b\left(3b+c\right)}}\geΣ\dfrac{4a^2}{7b+c}\)
\(=Σ\dfrac{4a^3}{7ab+ac}\ge\dfrac{4\left(a+b+c\right)^3}{3Σ\left(7ab+ac\right)}=\dfrac{\left(a+b+c\right)^3}{18}\ge\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
Never nerf :|, cũng xài Holder nhưng theo hướng khác :v
Áp dụng BĐT Holder ta có:
Đặt \(P=\dfrac{a^2}{\sqrt{3b^2+bc}}+\dfrac{b^2}{\sqrt{3c^2+ca}}+\dfrac{c^2}{\sqrt{3a^2+ab}}\)
\(P^2\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\ge\left(a^2+b^2+c^2\right)^3\)
Giờ chứng minh \(\left(a^2+b^2+c^2\right)^3\ge\dfrac{9}{4}\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\)
\(\Leftrightarrow4\left(a^2+b^2+c^2\right)^3\ge9\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\)
\(\Leftrightarrow4\left(a^2+b^2+c^2\right)^3\ge3\left(ab+bc+ca\right)\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\)
Lại có BĐT quen thuộc \(a^2+b^2+c^2\ge ab+bc+ca\)
Nên chỉ ra \(4\left(a^2+b^2+c^2\right)^2\ge3\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\)
Điều này đúng vì
\(4\left(a^2+b^2+c^2\right)^2\ge12\left(a^2b^2+b^2c^2+c^2a^2\right)=3\left(4a^2b^2+4b^2c^2+4c^2a^2\right)\)
\(\ge3\left(3a^2b^2+a^2bc+3b^2c^2+ab^2c+3c^2a^2+abc^2\right)\)
\(=3\left[a^2\left(3b^2+bc\right)+b^2\left(3c^2+ca\right)+c^2\left(3a^2+ab\right)\right]\)
1 were - would you play
2 weren't studying - would have
3 had taken - wouldn't have got
4 would you go - could
5 will you give - is
6 recycle - won't be
7 had heard - wouldn't have gone
8 would you buy - had
9 don't hurry - will miss
10 had phoned - would have given
11 were - wouldn't eat
12 will go - rains
13 had known - would have sent
14 won't feel - swims
15 hadn't freezed - would have gone