Tìm GTNN của biểu thức :
\(F=\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
\(\left(x-1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)\)
\(=\left(x+3\sqrt{x}-4\right)\left(x+3\sqrt{x}+2\right)=\left(x+3\sqrt{x}-1\right)^2-3^2\ge-9\)
Dấu "=" xảy ra \(\Leftrightarrow x+3\sqrt{x}-1=0\Leftrightarrow\left(\sqrt{x}+\frac{3}{2}\right)^2-\frac{13}{4}=0\)
Tự giải tiếp
\(x\ge0\Rightarrow f\left(x\right)\ge-1.8=-8\)
Vậy GTNN của f(x) là -8 tại x=0
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)
\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)
nhóm x với x + 3 ; x + 1 và x + 2 nha
\(F=\sqrt{x\left(x+1\right)\left(x+2\right)\left(x+3\right)+5}=\sqrt{\left(x^2+3x\right)\left(x^2+3x+2\right)+5}\) ( * )
*Đặt \(t=x^2+3x\)Ta có :
( * ) \(=\sqrt{t.\left(t+2\right)+5}=\sqrt{\left(t+1\right)^2+4}\)
( * ) Đạt GTNN của F khi bằng 2 khi \(t+1=0\) hay \(t=-1\)
Vậy \(^{minF=2\Leftrightarrow x=\frac{-3\pm\sqrt{5}}{2}}\)