Giải pt
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{5x-3}{3x-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
ĐK: \(x\ge\frac{2}{5}\)
Ta có \(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\)
<=> \(\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=\frac{x^2}{2}+3x-\frac{1}{2}\)
<=> \(2\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=x^2+6x-1\)
Đặt \(\sqrt{5x-2}=a\left(a\ge0\right),\sqrt{x^2+x+1}=b\left(b\ge0\right)\)
=> \(a^2+b^2=5x-2+x^2+x+1=x^2+6x+1\)
Ta có \(2ab=a^2+b^2\)
<=> \(\left(a-b\right)^2=0\) <=> a=b
Theo cách đặt ta có \(\sqrt{5x-2}=\sqrt{x^2+x+1}\)
=> \(5x-2=x^2+x+1\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=3\left(TMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)
Vậy
ĐKXĐ: ...
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)
Đặt \(x+\frac{3}{x}+1=a\) pt trở thành:
\(\frac{4}{a}+\frac{5}{a-6}=-\frac{3}{2}\)
\(\Leftrightarrow8\left(a-6\right)+10a=-3a\left(a-6\right)\)
\(\Leftrightarrow3a^2-48=0\)
\(\Leftrightarrow a^2=16\Rightarrow a=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}+1=4\\x+\frac{3}{x}+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+3=0\left(vn\right)\\x^2-5x+3=0\end{matrix}\right.\)
PP chung ở cả 3 câu,nói ngắn gọn nhé:
Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.
Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.
Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự
a) \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)
\(\Leftrightarrow-21x=3x-60\)
\(\Leftrightarrow24x=60\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{5}{2}\right\}\)
b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{\left(8x-3\right)-2\left(3x-2\right)}{4}=\frac{2\left(2x-1\right)+\left(x+3\right)}{4}\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow x=-16\)
Vậy tập nghiệm của phương trình là \(S=\left\{-16\right\}\)
d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{9\left(3-x\right)+16\left(5-x\right)}{24}=\frac{12\left(1-x\right)-48}{24}\)
\(\Leftrightarrow27-9x+80-16x=12-12x-48\)
\(\Leftrightarrow-25x+107=-12x-36\)
\(\Leftrightarrow-13x+143=0\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của phương trình là \(S=\left\{11\right\}\)
\(x\ne0;3\)
\(\frac{x+3}{x-3}-\frac{1}{x}+\frac{5x-3}{x\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-3\right)}-\frac{x-3}{x\left(x-3\right)}+\frac{5x-3}{x\left(x-3\right)}=0\)
\(\Leftrightarrow x^2+7x=0\)
\(\Leftrightarrow x\left(x+7\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-7\end{matrix}\right.\)