K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

A B C H D E

Ta có:

AB=AD

=> tam giác BDA cân tại B

=> \(\widehat{BAD}=\widehat{BDA}\)(1)

Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)

Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)

Xét tam giác HAD và tam giác EAD có:

\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)

AH=AE (gt)

AD chung 

Suy ra tam giác HAD và tam giác EAD

=> \(\widehat{AHD}=\widehat{ADE}\)

như vậy DE vuông AC

b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC) 

Em xem lại đề bài nhé

17 tháng 4 2016

Sao khó vậy

k mk nha các bạn

Bài 1:

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)

hay \(\widehat{ABD}=60^0\)

Xét ΔABD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)

nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)

Suy ra: \(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)

\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)

hay \(\widehat{CAD}=30^0\)

b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D(Định lí đảo của tam giác cân)

Xét ΔADE vuông tại E và ΔCDE cân tại E có 

DA=DC(ΔDAC cân tại D)

DE chung

Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)

c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)

nên BC=2AB(Định lí tam giác vuông)

Suy ra: \(BC=2\cdot5=10\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=10^2-5^2=75\)

hay \(AC=5\sqrt{3}\left(cm\right)\)

 

4 tháng 7 2021

giúp với mn ơi

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

24 tháng 4 2016

A B C H D F

24 tháng 3 2022
Các bn làm ơn giải hộ mik câu a,b mik đang cần gấp
23 tháng 4 2017

1)ta có:BC^2=5^2=25

AB^2+AC^2=3^2+4^2=25

Vậy theo định lí py-ta-go đảo thì suy ra \(\Delta\)ABC vuông tại A

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

27 tháng 1 2021

Xét tg BAD có: BD = BA(gt) =>  tg BAD cân tại B 

=> ^BAD = ^BDA (TC tg cân)

Ta có: ^BAD + ^CAD = ^BAC = 90 độ

Mà ^CAD + ^ADE =  ^DEA = 90 độ

=>  ^BAD = ^ADE

Lại có: ^BAD = ^BDA (tg BAD cân tại B )

=> ^ADE = ^BDA

Xét tg vuông AHD và tg vuông ADE:

^ADE = ^BDA (cmt)

AD chung

=> tg vuông AHD = tg vuông ADE (ch - gn)

=> AE = AH ( 2 cạnh tg ứng)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)

hay \(\widehat{BAD}=\widehat{HDA}\)(1)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{EAD}=90^0\)(2)

Ta có: ΔHDA vuông tại H(AH\(\perp\)HD)

nên \(\widehat{DAH}+\widehat{HDA}=90^0\)(hai góc nhọn phụ nhau)(3)

Từ (1), (2) và (3) suy ra \(\widehat{EAD}=\widehat{HAD}\)

Xét ΔADH vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)(cmt)

Do đó: ΔADH=ΔAED(cạnh huyền-góc nhọn)

hay AH=AE(hai cạnh tương ứng)