Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N, cắt AB tại E và cắt AC tại F. Chứng minh rằng :
a) BE = CF
b) AE = \(\frac{AB+AC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái đề là sao? mình không hiểu lắm. có bị sai đề k vậy? thấy kì kì
a: Xét ΔAEF có
AM vừa là đường cao, vừa là phân giác
=>ΔAEF cân tại A
b:Kẻ BH//CF
=>góc BHE=góc AFE
=>góc BHE=góc BEH
=>BH=BE
Xét ΔMHB và ΔMFC có
góc MBH=góc MCF
MB=MC
góc BMH=góc CMF
=>ΔMHB=ΔMFC
=>BH=CF=BE
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2)
Từ (1) và (2)