Tìm GTLN:
A=\(\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
B=-x+\(\sqrt{x}-2\)
C=\(-2x+\sqrt{x}-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)
\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)
\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)
\(\Rightarrow A_{max}=2\) khi \(x=1\)
b)
\(x\ge0\)
\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)
\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
c) \(x\ge0\)
\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)
\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)
\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)
a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)
a/ \(x\ge0\), đặt \(\sqrt{x}=a\ge0\)
\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2-A.a+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)
\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)
\(\Rightarrow A_{max}=2\) khi \(x=1\)
b/ \(x\ge0\)
\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)
\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
c/ \(x\ge0\)
\(C=-2x+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)
\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{7}{8}\le\frac{-7}{8}\)
\(\Rightarrow C_{max}=\frac{-7}{8}\) khi \(x=\frac{1}{16}\)