cho 3 số x,y,z thỏa mãn \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
tính giá trị của biểu thức\(A=x^{2010}-2011\cdot y^{2011}-z^{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài này thiếu nhé : Phải là : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
Ta có : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-1\end{cases}}\)
Khi đó : \(A=\left(-1\right)^{2010}-2011\cdot\left(-1\right)^{2011}-\left(-1\right)^{2012}\)
\(=\left(-2011\right)\cdot\left(-1\right)=2011\)
Vậy : \(A=2011\) với x,y,z thỏa mãn đề.
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
CÔNG HỆ CÁI DƯỚI LẠI
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\\ \)
\(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow x=y=z=-1\Rightarrow A=2011}\)