K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

Biết nội quy r ko cần nói âu  -_-

8 tháng 3 2019

2k5???=))

5 tháng 6 2021

Nhìn mãi mới hiểu cái đề bài @-@

 

 

 

 

 

 


`a)đk:` $\begin{cases}\sqrt{x^2-2x} \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} ne 0\\\end{cases}$
`<=>` $\begin{cases}x \ge 2\,or\,x<0\\x \ne 0\end{cases}$
`b)A=(x+sqrt{x^2-2x})/(x-sqrt{x^2-2x})-(x-sqrt{x^2-2x})/(x+sqrt{x^2+2x})`
`=((x+sqrt{x^2-2x})^2-(x-sqrt{x^2-2x})^2)/((x+sqrt{x^2-2x})(x-sqrt{x^2-2x}))`
`=(x^2+x^2-2x+2sqrt{x^2-2x}-x^2-x^2+2x+2sqrt{x^2-2x})/(x^2-x^2+2x)`
`=(4sqrt{x^2-2x})/(2x)`
`=(2sqrt{x^2-2x})/x`
`c)A<2`
`<=>2sqrt{x^2-2x}<2x`
`<=>sqrt{x^2-2x}<x(x>=2)`(BP 2 vế thì x>=2)
`<=>x^2-2x<x^2`
`<=>2x>0`
`<=>x>0`
`<=>x>=2`
Vậy `x>=2` thì `A<2`.

5 tháng 6 2021

bài cuối rồi,cảm ơn cậu,chúc cậu có một cuối tuần vui vẻ

a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)

\(\Leftrightarrow x=25\)

b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x=1\)

hay \(x=-\dfrac{1}{9}\)

31 tháng 8 2021

a: ta có: (2x5)(x+2)2x(x1)=15(2x−5)(x+2)−2x(x−1)=15

2x2+4x5x102x2+2x=15⇔2x2+4x−5x−10−2x2+2x=15

x=25⇔x=25

b: Ta có: (52x)(2x+7)=4x225(5−2x)(2x+7)=4x2−25

4x225+(2x5)(2x+7)=0⇔4x2−25+(2x−5)(2x+7)=0

(2x5)(2x+5+2x+

27 tháng 10 2020

( x + 2 )3 - ( 2x + 3 )2 + ( 2x + 3 )( 2x - 3 ) = ( x - 2 )( x2 + 2x + 4 ) - 6x( x + 2 )

⇔ x3 + 6x2 + 12x + 8 - ( 4x2 + 12x + 9 ) + 4x2 - 9 = x3 - 8 - 6x2 - 12x

⇔ x3 + 10x2 + 12x - 1 - 4x2 - 12x - 9 = x3 - 6x2 - 12x - 8

⇔ x3 + 6x2 - 10 = x3 - 6x2 - 12x - 8

⇔ x3 + 6x2 - 10 - x3 + 6x2 + 12x + 8 = 0

⇔ 12x2 + 12x - 2 = 0 

⇔ 2( 6x2 + 6x - 1 ) = 0

⇔ 6x2 + 6x - 1 = 0 (*)

Δ = b2 - 4ac = 62 - 4.6.(-1) = 60

Δ > 0 nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{60}}{12}=\frac{-3+\sqrt{15}}{6}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{60}}{12}=\frac{-3-\sqrt{15}}{6}\end{cases}}\)

Vậy ...

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

a: ĐKXĐ: x<>2; x<>0

b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

c: M>=-3

=>(x+1+6x)/2x>=0

=>(7x+1)/x>=0

=>x>0 hoặc x<=-1/7

28 tháng 7 2019

\(\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right)=1\)

\(\Leftrightarrow\left(-2x+x^2\right)^5=1\)

\(\Leftrightarrow-2x+x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1-\sqrt{2}\\x=\sqrt{2}+1\end{cases}}\)

Vậy \(x=1-\sqrt{2}\) hoặc \(x=\sqrt{2}+1\)

23 tháng 9 2021

Bài 1:

\(N=2x^2+4y^2-2x-4y+15=2\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)+\dfrac{27}{2}=2\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

\(minN=\dfrac{27}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

Bài 2:

\(\Leftrightarrow4x^2+12x+9-25x^2+50x-25=0\)

\(\Leftrightarrow21x^2-62x+16=0\)

\(\Leftrightarrow\left(3x-8\right)\left(7x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)

23 tháng 9 2021

Bạn vào giúp mk thêm câu nữa nhé.

14 tháng 10 2021

a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)

\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)

\(\Leftrightarrow-12x=12\)

hay x=-1

6 tháng 8 2021

\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)

\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)

\(\text{⇔}8x+5=-11\) 

\(\text{⇔}8x=-16\)

\(\text{⇔}x=-2\)

Vậy: \(x=-2\)

==========

\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)

\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)

\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)

\(\text{⇔}-26x=-\dfrac{4}{3}\)

\(\text{⇔}x=\dfrac{2}{39}\)

15 tháng 10 2021
(x-1)(x-1)(x-1)(x-1)
30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)