CTR :
S=\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+......+\dfrac{1}{2001!}< 3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(n^2=n.n> (n-1)n\) với mọi \(n\geq 2\)
\(\Rightarrow \frac{1}{n^2}< \frac{1}{n(n-1)}\)
Do đó:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \underbrace{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n-1)}}_{N}(1)\)
Lại có: \(N=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{n-(n-1)}{(n-1)n}\)
\(N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1(2)\)
Từ (1); (2) theo nguyên tắc bắc cầu suy ra:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
Ta có đpcm.
Bạn vào đây nhé! https://hoc24.vn/hoi-dap/question/206800.html
Câu hỏi giống nhau nên bạn vào link đó xem đỡ mất công mình ghi lại nhé!
S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²
⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³
⇒ 2S/3 = S - S/3
= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)
= 1/3 - 1/3²⁰²³
⇒ S = (1/3 - 1/3²⁰²³) : 2/3
= (1 - 1/3²⁰²²) : 2
Lại có: 1 - 1/3²⁰²² < 1
⇒ S < 1/2
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\left(\dfrac{2010}{2}+1\right)+\left(\dfrac{2009}{3}+1\right)+...+\left(\dfrac{1}{2011}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}+\dfrac{2012}{2012}}=\dfrac{1}{2012}\)
=>\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)
=>\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2001}{4006}\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)
=>\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)
=>1/(x+1)=1/2-2001/4006=1/2003
=>x+1=2003
=>x=2002
đặt \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ Q=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)
ta có:
\(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2001}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\)\(\Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1001}\right)\\ \Rightarrow P=\dfrac{1}{1002}+...+\dfrac{1}{2002}\\ \Rightarrow P=Q\)\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\left(đpcm\right)\)
Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)
Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)
Từ (1) và (2) suy ra đpcm.
\(S=1+\frac{1}{1!}+\frac{1}{2!}+......+\frac{1}{2001!}=1+1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{2001!}< 1+1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}=2+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....-\frac{1}{2001}< 2+1=3\Rightarrow S< 3\text{(đpcm)}\)
Ta có
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3};\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4};.....;\dfrac{1}{2001!}=\dfrac{1}{1.2.3.4.......2000.2001}< \dfrac{1}{2000.2001}\)
Vậy S<1+1+\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{2000.2001}\)
=1+1+1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{2000}-\dfrac{1}{2001}\)
= 3-\(\dfrac{1}{2001}< 3\)