chứng minh a,góc đối diện với cạnh lớn hơn
b, cạnh đối diện với góc lớn hơn
GIÚP MIK VS NHA MN , MÌNH ĐAG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T làm, sai đâu sửa hộ nhé
Giả sử có tam giác ABC có góc B > góc C => AC < AB
Ta xét 2 trường hợp:
TH1: Nếu AB > AC thì góc B < góc C (góc đối diện với cạnh lớn hơn là góc lớn hơn)
Điều này trái với giả thuyết góc B > góc C
TH2: Nếu AB = AC thì tam giác ABC cân tại A
=> Góc B = góc C (tính chất của tam giác cân)
Điều này trái với giả thuyết góc B > góc C
Vậy: Góc B > góc C => AC < AB (đpcm)
Trong một tam giác, đối diện với cạnh nhỏ nhất là góc nhọn | Đ | |
Trong một tam giác, đối diện với cạnh lớn nhất là góc tù | S | |
Trong một tam giác vuông, cạnh đối diện với góc vuông là cạnh lớn nhất | Đ | |
Trong một tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất | Đ |
Vì góc tù là góc lớn nhất trong 1 tam giác => có thể kết luận như vậy
Câu | Đúng | Sai |
1. Trong một tam giác vuông, cạnh đối diện với góc vuông là cạnh lớn nhất | x | |
2. Trong một tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất | x | |
3. Trong một tam giác, đối diện cạnh nhỏ nhất là góc nhọn | x | |
4. Trong một tam giác, đối diện với cạnh lớn nhất là góc tù | x |
Giả sử ∆ABC có AB < AC . Lấy điểm D trên cạnh AC ( D nằm giữa A và C ) sao cho AB = AD
Kẻ tia phân giác của ∠A cắt BC tại E , nối E với D
Xét ∆ABE và ∆ADE có :
AB = AC (cạnh dựng)
∠A1 = ∠A2 (AE là phân giác của ∠BAC)
AE là cạnh chung
=> ∆ABE = ∆ADE (c - g - c)
=> ∠B = ∠ADE (góc T/Ư)
∠ADE là góc ngoài của ∆DEC => ∠ADE = ∠DEC + ∠C => ∠ADE > ∠C
Mà ∠B = ∠ADE => ∠B > ∠C
Vậy ∆ABC có AB < AC thì ∠C < ∠B hoặc ∠C < ∠B thì AB < AC
Hay trong tam giác cạnh đối diện với góc lớn hơn thì lớn hơn
kệ mẹ bạn
vậy t ns kệ mẹ bn đc ko