Tìm số tự nhiên nhỏ nhất có ba chữ số sao cho khi chia a cho 11 thì dư 5, khi chia a cho 13 thì dư 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười wá! Chtt có câu y hệt lun, có cả lời giải lun đấy, chị k muốn viết nhiu
Ta có a chia cho 11 dư 5 => a = 11x + 5 => a + 6 = 11x + 5 + 6 = 11x + 11 chia hết cho 11
Do 77 chia hết cho 11 => a + 6 + 77 cũng chia hết cho 11 => a + 83 chia hết cho 11 (1)
Lại có a chia 13 dư 8 => a = 13y + 8 => a + 5 = 13y + 8 + 5 = 13y + 13 chia hết cho 13
Do 78 chia hết cho 13 => a + 5 + 78 chia hết cho 13 => a + 83 chia hết cho 13 (2)
Từ 1 và 2 => a + 83 chia hết cho BCNN(11;13) => a + 83 chia hết cho 143
=> a = 143k - 83
Để a nhỏ nhất và a có 3 chữ số => k = 2 => a = 203
a chia 11 dư 5⇔a=11m+5=>a+6=(11m+5)+6=11m|+11=11.(m+1) chia hết cho 11( m thuộc N)
Vì 77 chia hết cho 11 nên (a+6)+77 cũng chia hết cho 11⇔a+83 chia hết cho 11. (1)
a chia 13 dư 8⇔a=13n+8=>a+5=(13n+8)+5=13n+13=13.(n+1) chia hết cho 11 ( n thuộc N)
Vì 78 chia hết cho 13 nên (a+5)+78 cũng chia hết cho 13⇔a+83 chia hết cho 13. (2)
Từ (1) và (2)=>a+83chia hết cho BCNN(11;13)⇔a+83 chhia hết cho 143
=>a=143k-83( k thuộc N*)
Để a nhỏ nhất có 3 chữ số ta chọn k=2. Khi đó a=203
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$