Tìm \(x,y\in N\) biết :
a) \(3^y=x^3+x^2+x+1\)
b) \(2^y=x^4+x^3+x+1\)
c) \(3^y=x^2+7-5x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\(\left(x-3\right)^2-\left(x+2\right)^2-5\left(\frac{1}{5}-7\right)=-30\)
=>(x-3-x-2)(x-3+x+2)-x+35=-30
=>-5(2x-1)-x+35=-30
=>-10x+5-x+35=-30
=>-11x+40=-30
=>-11x=-70 =>x=70/11
d)\(\left(x+3\right)^2-\left(x+5\right)\left(x-5\right)=2\)
\(=>\left(x+3\right)^2-x^2+25=2\)
\(=>\left(z+3-z\right)\left(z+3+z\right)+25=2\)
\(=>3\left(2z+3\right)+25-2=0\)
\(=>6z+9+23=0\)
\(=>6x+32=0=>6x=-32=>x=-\frac{16}{3}\)
e)\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(=>3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\)
\(=>3x^2+12x+12+4x^2-4x+1-7x^2+63\)
\(=>8x+76=36=>8x=36-76=>x=-40\div8=-5\)
g)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(=>x^3-1-x\left(x^2-4\right)=5=>x^3-1-x^3+4x=5\)
\(=>4x-1=5=>4x=6=>x=\frac{3}{2}\)
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
1. a) \(( 5x-1)^2 - (5x-4) ( 5x+4) = 7\)
\(\Leftrightarrow\)\(25x^2-10x+1-(25x^2-16)=7\)
\(\Leftrightarrow\)\(25x^2-10x+1-25x^2+16-7=0\)
\(\Leftrightarrow\)\(10x=10\)
\(\Rightarrow x=1\)
b) \(( 4x-1)^2 - (2x+3)^2 + 5(x+2)^2 + 3(x-2) ( x+2) = 500\)
\(\Leftrightarrow\)\(16x^2-8x+1-4x^2-12x-9+5x+10+3x^2-12=500\)
\(\Leftrightarrow\)\(15x^2-15x=510\)
\(\Leftrightarrow\)\(15(x^2-x)=510\)
\(\Leftrightarrow\)\(x^2-x=34\)
\(\Rightarrow x=-5,352349955\)
c) \((x-2)^3 - (x-2) ( x^2+2x+4 ) + 6(x-2)(x+2) = 60\)
\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-2^3\right)+6\left(x^2-4\right)=60\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)
\(\Leftrightarrow12x-24=60\)
\(\Leftrightarrow12x=84\)
\(\Rightarrow x=7\)
a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0
<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0
<=> -6x -4 = 0
<=> x= 4/6
Bài 2: Tính giá trị của biểu thức sau:
\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)
Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)
\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)
Bài 4: Tìm x
a) \(9x^2+x=0\)
\(\Rightarrow x\left(9x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)
b) \(27x^3+x=0\)
\(\Rightarrow x\left(27x^2+1=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)
Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)
Vậy \(x=0\)
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)
a) 3y=x2.(x+1)+(x+1)=(x2+1).(x+1)
y=0 => x=0 (tự tính)
vì x2+1 và x+1 cùng tính chẵn lẻ, mà 3y lẻ => x2+1 lẻ và x+1 lẻ => x chẵn
+) x chia 3 dư 0 => (x+1).(x2+1) ko chia hết cho 3
+) x chia 3 dư 1 => (x+1).(x2+1) ko chia hết cho 3
+) x chia 3 dư 2 => (x+1).(x2+1) chia hết hco 3, mà x2 chia 3 dư 1 => x2+1 ko chia hết cho 3.(loại)-đoạn này ko hiểu thì hỏi :))
bây h làm kĩ hơn nè, bn cố hiểu ha =,='
\(3^y=x^3+x^2+x+1=x^2.\left(x+1\right)+\left(x+1\right)=\left(x^2+1\right).\left(x+1\right)\)
\(\text{Xét }y=0\Rightarrow\left(x^2+1\right).\left(x+1\right)=1\Rightarrow\left(x^2+1\right),\left(x+1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\hept{\begin{cases}x^2+1=1\\x+1=1\end{cases}\text{hoặc }\hept{\begin{cases}x^2+1=-1\\x+1=-1\end{cases}\Rightarrow}x=0\left(\text{vì x thuộc N}\right)}\)
\(\text{Xét }y\ne0\Rightarrow\left(x^2+1\right).\left(x+1\right)⋮3\)
vì x lẻ x2 cũng lẻ và x chẵn x2 cũng vậy => x2+1 và x+1 cùng tính chẵn lẻ, mà 3y lẻ => x2+1 lẻ và x+1 lẻ => x chẵn
+) x chia 3 dư 0 => x và x2 chia hết cho 3 =>x+1 và x2+1 chia 3 dư 1 => (x+1).(x2+1) không chia hết cho 3
+) x chia 3 dư 1 => x chia 3 dư 1 và x2 chia 3 dư 1 => x+1 và x2+1 chia 3 dư 2 => (x+1).(x2+1) không chia hết cho 3
+) x chia 3 dư 2 => x + 1 chia hết cho 3 và x2+1 chia 3 dư 2 => (x+1).(x2+1) chia hết cho 3 nhưng x2+1 ko chia hết cho 3 (loại)
p/s: chỗ cuối: x chia 3 dư 2, bn lấy vd: 5 : 3 dư 2 và 52 chia 3 dư 1 => 52+1 chia 3 dư 2 :))
còn chỗ vì x2+1 ko chia hết cho 3 nên loại là vì bn thấy 3n(n khác 0)=3.3...3 nên xuất hiện một số ko chia hết cho 3 là loại
----cố hiểu bn nhoa, vt mỏi tay lắm >: