Cho tứ giác ABCD nội tiếp đường tròn (O;R) (AB<CD). Gọi P là điểm chính giữa cung nhỏ AB; DP cắt AB tại E và cắt CB tại K; CP cắt AB tại F và cắt DA tại I
a. Chứng minh: tứ giác CKID nội tiếp được và IK // AB
b. Chứng minh: \(AP^2\) = PE . PD = PF . PC
c. Chứng minh: AP là tiếp tuyến của đường tròn ngoại tiếp tam giác AED
d. Gọi \(R_1,R_2\) là các bán kính đường tròn ngoại tiếp tam giác AED và BED
Chứng minh: R\(_1+R_2=\sqrt{4R^2-PA^2}\)