K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2019

\(x^2+\left(m-1\right)x-6=0\)

Do \(a.c=-6< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\Rightarrow x_1x_2+6=0\end{matrix}\right.\)

\(A=\left(x^2_1-9\right)\left(x_2^2-4\right)=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)

\(=\left(x_1x_2+6-2x_1-3x_2\right)\left(x_1x_2+6+2x_1+3x_2\right)\)

\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)

\(\Rightarrow A_{max}=0\) khi \(2x_1+3x_2=0\)

Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-6\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{-3x_2^2}{2}=-6\\x_1=\dfrac{-3x_2}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2\\x_1=-3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)

\(\Rightarrow m=1-\left(x_1+x_2\right)\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

2 tháng 3 2019

m=2,m=0

a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0

=>-m=0

=>m=0

c: Để PT có hai nghiệm tráo dấu thì 3m-4<0

=>m<4/3

d: Δ=(-2m)^2-4(3m-4)

=4m^2-12m+16

=(2m-3)^2+7>=7

=>Phương trình luôn có hai nghiệm pb

Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0

=>m>4/3

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

Câu 1:

Thay x=-1 vào pt, ta được:

-m-4=-8*(-1)+3m

=>3m+8=-m-4

=>4m=-12

=>m=-3

Câu 2:

khi x=-1 thì pt sẽ là:

m(-1-5)=18+3m

=>3m+18=-6m

=>9m=-18

=>m=-2

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

PT $\Leftrightarrow x(m-2)=m^2-4$

a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$

$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$

$\Leftrightarrow (m-2)(m+2-1)=0$

$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$

b) Để pt có nghiệm thì:

\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$

Vậy pt có nghiệm với mọi $m\in\mathbb{R}$

c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.

10 tháng 6 2016

\(3x^2-2\left(x^2+4x\right)+3x+2=0\)

\(\Leftrightarrow3x^2-2x^2-8x+3x+2=0\)

\(\Leftrightarrow x^2-5x+2=0\)

10 tháng 6 2016

Ta có: 3x2 - 2(x2 + 4x) + 3x + 2 = 0 

     => 3x2 - 2x2 - 8x + 3x + 2 = 0 

     => x2 - 5x + 2 =0 

\(3x^2-2\left(x^2+4x\right)+3x+2=0\)

,<=> \(3x^2-2x^2-8x+3x+2=0\)

<=> \(x^2-5x+2=0\)

8 tháng 8 2023

a)

Thế m = 1 vào PT được: \(x^2-2.1.x-2.1-6=0\)

\(\Leftrightarrow m^2-2x-8=0\\ \Delta=4+32=36\\ \left\{{}\begin{matrix}x_1=4\\x_2=-2\end{matrix}\right.\)

b)

Theo vi ét có; \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-6\end{matrix}\right.\)

\(\Delta'=m^2+2m+6=m^2+2m+1+5=\left(m+1\right)^2+5>0\)

PT có 2 nghiệm phân biệt với mọi m.

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4m^2+4m+12\\ =\left(2m\right)^2+2.2m.1+1+11\\ =\left(2m+1\right)^2+11\ge11\)

GTNN của \(x_1^2+x_2^2\) đạt 11 khi \(m=-\dfrac{1}{2}\)

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

12 tháng 3 2021

a.

⇔ \(5x^2-3x+\left(-7\right)-1=0\)

⇔ \(5x^2-3x-8=0\)

Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0

Vì Δ>0 nên pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)