Tìm n là số tự nhiên để: n+30 và n-11 là bình phương của 1 số tự nhiên
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NH
0
B
0
DH
6
24 tháng 3 2020
Theo đề: \(n+30=a^2\); \(n-11=b^2\)\(\left(a;b\in N\right)\)
Trừ vế theo vế, ta được: \(a^2-b^2=41\Rightarrow\left(a-b\right)\left(a+b\right)=41\)
Vì \(a-b< a+b\)nên ta có trường hợp sau
\(\hept{\begin{cases}a-b=1\\a+b=41\end{cases}\Rightarrow\hept{\begin{cases}a=21\\b=20\end{cases}}}\)
Vậy...
P/s: Bài này không dành cho lớp 6
N
0
BC
0
BC
1
AM
14 tháng 6 2015
Xét 1 và 2
Nếu N tận cùng là 7 =>N+45 có tận cùng là 2 mà số chính phương không có số nào có tận cùng là 2 nên 1 và 2 có 1 cái sai
Xét 2 và 3
N có chữ số tận cùng là 7 =>N-44 có tận cùng là 3 mà số chính phương không có số nào có tận cùng là 3 nên 2 và 3 có 1 cái sai
=>1 và 3 đúng 2 sai
Với n+5 và n+30 là số chính phương
{n+5=a2n+30=b2{n+5=a2n+30=b2 ⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25
Mà -25=-5.5=-1.25=-25.1
Giờ bn lập bảng các gt của a và b là đc
Chúc bn hok tốt :)