K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

hình bn tự vẽ nha ( hình ko khó vẽ đâu)

a) + b) Vì DH vuông góc EF (gt)

      => góc DHE=gócDHF

Xét tam giác DEH và tam giác DFH

 có :     góc DHE= góc DHF(cmt)

            DE=DF(gt)

            DH chung

=> tam giác DEH = tam giác DHF( c.h.g.n)

=> HE=HF( 2 cạnh tương ứng)

=> góc EDH= góc FDH(2 góc tương ứng)

c) Vì HM vuông góc DE => góc HME = 90 độ

   Vì HN vuông góc DF => góc HNF = 90 độ

   Vì tam giác DEH= tam giác DFH(cm câu a)

   => EH=HF( 2 cạnh tương ứng)

   => góc DEH= góc DFH(2 góc tương ứng)

  Xét tam giác HEM và tam giác HFN

    có :  góc EMH = góc FNH = 90 độ (cmt)

           EH= HF (cmt)

            góc MEH= góc FNH(cmt)

   => tam giác HEM= tam giác HFN( c.h.g.n) (đpcm)

28 tháng 3 2020

D E F M N H

lưu ý hình ảnh chỉ mang t/c minh họa  ; vui lòng k vẽ theo

xét \(\Delta DHM\)VÀ \(\Delta DHN\)

DH-CẠNH CHUNG

\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)

=> \(\Delta DHM=\Delta DHN\)

=>HM = HN.

b) xét tam giác DEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )

=>\(\widehat{MEH}=\widehat{NFH}\)

XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)

\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)

\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)

\(HM=HN\left(cmt\right)\)

=> \(\Delta MEH=\Delta NFH\)

D E F M N H

a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:

\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)

\(HD\)cạnh chung

\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)

\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)

b) Ta có: \(DE=DF\)( vì  tam giác DEF cân tại D )

Hay \(DM+ME=DN+NF\)

mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )

\(\Rightarrow ME=NF\)

Xét \(\Delta HME\)và \(\Delta HNF\)có:

\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)

\(ME=NF\left(cmt\right)\)

\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)

\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)

hok tốt!!

a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có 

DE=DF(ΔDEF cân tại D)

DH chung

Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)

Suy ra: HE=HF(hai cạnh tương ứng) và \(\widehat{EDH}=\widehat{FDH}\)(hai góc tương ứng)

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HF=HE

b: EF=6cm nên HF=3cm

=>DH=4cm

c: Xét ΔDME và ΔDNF có 

DM=DN

\(\widehat{EMD}\) chung

DE=DF

Do đó: ΔDME=ΔDNF

10 tháng 5 2022

Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF 

^DFE _ chung 

^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có 

góc F chung

Do đó: ΔEDF\(\sim\)ΔDHF

24 tháng 11 2023

a: 

\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)

\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)

Do đó: \(\widehat{HDE}=\widehat{F}\)

ΔDEF vuông tại D

mà DM là đường trung tuyến

nên MD=MF

=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)

\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)

=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)

=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)

=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)

b: 

Xét ΔDEF vuông tại D có DH là đường cao

nên \(DE\cdot DF=DH\cdot EF\)

ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)

\(=EF^2+2\cdot DE\cdot DF+DH^2\)

\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)

\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)

\(=EF^2+2\cdot DH\cdot EF\)

\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)

\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)

\(=DH^2>0\)

=>EF+DH>DF+DE

=>EF-DE>DF-DH

24 tháng 11 2023

ai giúp mik vs