tìm GTNN
P=xy(x+4)(y-2)+6x2+5y2+24x-10y+243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 bài quen thuộc mik đã từng làm
Ta có : \(P=xy\left(x+4\right)\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)
\(=\left(x^2+4x\right)\left(y^2-2y\right)+6\left(x^2+4x\right)+5\left(y^2-2y+6\right)+2013\)
\(=\left(x^2+4x\right)\left(y^2-2y+6\right)+5\left(y^2-2y+6\right)+2013\)
\(=\left(x^2+4x+5\right)\left(y^2-2y+6\right)+2013\ge1.5+2013=2018\)
Dấu " = " xảy ra \(\Leftrightarrow x=-2;y=1\)
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Với \(x=0\Leftrightarrow y=0\),
Với \(x,y\ne0\):
\(\left(\sqrt{x^2+1}-x\right)\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)
\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)
Tương tự ta cũng có: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)
suy ra \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
\(M=10x^4+8y^4-15xy+6x^2+5y^2+2017\)
\(=18x^4+26x^2+2017\ge2017\)
Dấu \(=\)tại \(x=0\Rightarrow y=0\).
`a)`
`A-B=(6x^2-7xy-4y^2)-(-2x^2+7xy+5y^2)`
`=6x^2-7xy-4y^2+2x^2-7xy-5y^2`
`=(6x^2+2x^2)-(7xy+7xy)-(4y^2+5y^2)`
`=8x^2-14xy-9y^2`
___________________________________________
`b)`
`Q-(3x^4-2xyz)=xy+3x^4-5xyz-713`
`Q=(xy+3x^4-5xyz-713)+(3x^4-2xyz)`
`Q=xy+3x^4-5xyz-713+3x^4-2xyz`
`Q=xy+6x^4-7xyz-713`
a) A= 12-7xy-4y^2
B=-4+7xy+5y^2
A-B= 16-14xy-9y^2
b) Q(x)= xy+12-5xyz-713+12-2xyz
= xy+(12+12-713)+(-5xyz-2xyz)
= xy-689-7xyz
Chúc bạn học tốt !
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
\(P=xy\left(x+4\right)\left(y-2\right)+6x\left(x+4\right)+5y\left(y-2\right)+243\)
\(=y\left(y-2\right)\left[x\left(x+4\right)+5\right]+6\left[x\left(x+4\right)+5\right]+213\)
\(=y\left(y-2\right)\left(x^2+4x+5\right)+6\left(x^2+4x+5\right)+213\)
\(=\left(x^2+4x+5\right)\left(y^2-2y+6\right)+213\)
\(=\left[\left(x+2\right)^2+1\right].\left[\left(y-1\right)^2+5\right]+213\ge1.5+213=218\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Vậy \(P_{min}=218\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
mơn nha bn