Cho hình tang ABCD (AB//CD) gọi M,N,Q lần lượt là trung điểm của AB, AD,DC và BC
a) Chứng mình tam giác MNQ, NPQ là tam giác cân
b) Chứng miinh MP là đường trung trực đoạn thẳng NQ
c) Gọi E, F lần lượt là giao điểm của NQ với AC và BD. Chứng minh E,F lần lượt là trung điểm của AC và BD
d) Gọi O là giao điểm của AC và BD. Chứng minh M,O,P thẳng hàng.
Chỉ cần làm câu d thôi ạ. Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Làm theo ABCD là ht cân
a) Xét ΔADN và ΔBCN có:
AD=BC(gt)
^D=^C(gt)
DN=CN(gt)
=> ΔADN =ΔBCN(c.g.c)
=> NA=NB
=>ΔABN cân tại N
b) ΔABN cân tại N(cmt)
Có: NM là đường trung gtuyeens uungs vs cạnh AB
=>NM cx là đg trung trực của AB