Giải pt
\(\sqrt[3]{3x^2+x+2007}\)-\(\sqrt{3x^2-7x+2008}\)-\(\sqrt[3]{6x-2009}\)=\(\sqrt[3]{2008}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)
Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)
Có \(a-b=4x+1-3x+2=x+3\)
=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)
=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))
<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)
Vậy pt (1) vô nghiệm
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))
Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)
=> \(a-b=4x+1-3x+2=x+3\)
Có \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)
=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)
<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)
<=> \(676-364x+49x^2=48x^2-20x-8\)
<=> \(676-364x+49x^2-48x^2+20x+8=0\)
<=> \(x^2-344x+684=0\)
<=> \(x^2-342x-2x+684=0\)
<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)
<=> (x-2)(x-342)=0
=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)
Vậy pt (1) có nghiệm x=2
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)
\(\Rightarrow x\le1-\sqrt{3}\)
Ta có:
\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))
\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)
(Kết hợp với điều kiện ta suy ra)
\(\Leftrightarrow x=-1\)
Câu hỏi của Nguyễn Phương Nga - Toán lớp 9 - Học toán với OnlineMath
tham khảo
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)