K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2019

\(x^{6m+4}-x^4+x^{6n+2}-x^2+x^4+x^2+1\)

\(=x^4\left(x^{6m}-1\right)+x^2\left(x^{6n}-1\right)+x^4+x^2+1\)(1)

Ta có \(x^{6n}-1=\left(x^6-1\right)\left(x^{6\left(n-1\right)}+x^{6\left(n-2\right)}+...+x^6+1\right)⋮\left(x^6-1\right)\)

Tương tự \(\left(x^{6n}-1\right)⋮\left(x^6-1\right)\)

\(x^6-1=\left(x^2\right)^3-1=\left(x^2-1\right)\left(x^4+x^2+1\right)⋮\left(x^4+x^2+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^{6m}-1\right)⋮\left(x^4+x^2+1\right)\\\left(x^{6n}-1\right)⋮\left(x^4+x^2+1\right)\end{matrix}\right.\) (2)

Từ (1);(2) \(\Rightarrow\left(x^{6m+4}+x^{6n+4}+1\right)⋮\left(x^4+x^2+1\right)\)

7 tháng 6 2015

x6m+4+x6n+2+1=x6m+4-x4+x6n+2-x2+x4+x2+1

                      =x4.(x6m-1)+x2.(x6n-1)+(x4+x2+1)

Vì x6m-1 chia hết cho x6-1 , x6n-1 chia hết cho x6-1 và 

              x6-1=(x3+1)(x3-1) chia hết cho x2-x+1

              x4+x2+1=(x2+1)2-x2 chia hết cho x2-x+1

 => đpcm

\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)

\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)

\(\text{Phân tích thành nhân tử}\)

\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)

Câu 3 ko hiểu >o<

3 tháng 10 2016

hài bài khó quá mình cũng học lớp 8 nhưng kho lắm

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

14 tháng 10 2018

Vì n và n + 1 là 2 STN liên tiếp nên đa thức có dạng:

      \(\left(x^{2k}-1\right)\left(x^{2k+1}-1\right)\)

\(=\left(x^2-1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x-1\right)\left(x+1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x+1\right)\left(x-1\right)^2P\left(x\right)Q\left(x\right)⋮\left(x+1\right)\left(x-1\right)^2\)