Tìm x,y≥0 sao cho \(\left(x^2+4y+8\right)\left(y^2+4x+8\right)=\left(3x+5y+4\right)\left(5x+3y+4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
a, Trừ vế theo vế hai phương trình ta được
\(x^2+6y-y^2-6x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)
Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)
\(\Leftrightarrow x^2-4x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)
Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)
\(\Leftrightarrow y^2-6y+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)
\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)
\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)
b, Trừ vế theo vế hai phương trình
\(3x^3-3y^3=y^2-x^2\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)
Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)
Tương tự \(y>0\)
\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)
\(\Rightarrow x=y\)
\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)
\(\Leftrightarrow3x^3-x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)
\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)
a, \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-2\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+16\)
\(=-11x+16\)
b, \(\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(=8x^2y-6y^2-\left(9x^2y-12y^2\right)\)
\(=8x^2y-6y^2-9x^2y+12y^2=-x^2y+6y^2\)
c, \(3y^2\left[\left(2y-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2.3y-y+y^2+y^3+y\)
\(=9y^3+y^2+y^3=10y^3+y^2\)
Chúc bạn học tốt!!!
a, \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-2\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+16\)
\(=-11x+16\)
b, \(\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=-x^2y+6y^2\)
c, \(3y^2\left[\left(2y-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2.3y-y\left(1-y-y^2-1\right)\)
\(=9y^3-y\left(-y-y^2\right)\)
\(=9y^3+y^2+y^3=10y^3+y^2\)
\(VT=\left[\left(x-2\right)^2+4\left(x+y+1\right)\right]\left[\left(y-2\right)^2+4\left(x+y+1\right)\right]\)
\(VT=\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+16\left(x+y+1\right)^2\)
\(VP=\left[4\left(x+y+1\right)-\left(x-y\right)\right]\left[4\left(x+y+1\right)+\left(x-y\right)\right]\)
\(VP=16\left(x+y+1\right)^2-\left(x-y\right)^2\)
Ta có \(VT=VP\)
\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]=-\left(x-y\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(y-2\right)^2+4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+\left(x-y\right)^2=0\) (1)
Nhận xét:
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(x-2\right)^2\left(y-2\right)^2\ge0\\x;y\ge0\Rightarrow4\left(x+y+1\right)>0\Rightarrow4\left(x+y+1\right)\left[\left(x-2\right)^2+\left(y-2\right)^2\right]\ge0\end{matrix}\right.\)
Vậy (1) xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2\left(y-2\right)^2=0\\\left(x-2\right)^2+\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=2\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=y=2\)