Cho tam giác ABC vuông tại A có đường phân giác là AD. Biết AB = 21cm, AC = 28cm. Đường thẳng qua D song song với AB cắt ac tại E.
a) Tính CD, BD, ED
b) Đường thẳng vuông góc với AD tại A cắt BC kéo dài tại E. Tính BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠∠(BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a: BC=35(cm)
Xét ΔABC có AD là đường phân giác
nên BD/AB=CD/AC
hay BD/21=CD/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó: BD=15(cm); CD=20(cm)
Xét ΔABC có ED//AB
nên ED/AB=CD/CB
=>ED/21=20/35=4/7
=>ED=12(cm)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠ (BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a, xét tam giác ABC vuông tại A (gt)
=>AB^2 + AC^2 = BC^2 (đl Pytago)
có AB = 21; AC = 28 (gt)
=> BC^2 = 21^2 + 28^2
=> BC^2 =1225
=> BC = 35 do BC > 0
xét tam giác ABC có AD là pg (gt)
=> BD/AB = DC/AC (tc)
=> (BD + DC)/(AB + AC) = BD/AB = DC/AC
có : AB = 21; AC = 28; BC = BD + DC = 35
=> 35/49 = BD/21 = DC/28
=> DB = 15 và DC = 20
xét tam giác ABC có DE // AB
=> ED/AB = CD/CB (hệ quả)
thay số vào tính được ED
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\) (Pytago).
Thay: \(BC^2=3^2+4^2.\)
\(\Rightarrow BC=5\left(cm\right).\)
Xét \(\Delta ABC:\)
BD là đường phân giác (gt).
\(\Rightarrow\dfrac{AD}{CD}=\dfrac{AB}{BC}\) (Tính chất đường phân giác).
\(\Rightarrow\dfrac{AD}{CD+AD}=\dfrac{AB}{BC+AB}.\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{BC+AB}.\)
Thay: \(\dfrac{AD}{4}=\dfrac{3}{5+3}.\)
\(\Rightarrow AD=1,5\left(cm\right).\)
\(\Rightarrow CD=BC-AD=5-1,5=3,5\left(cm\right).\)
b) Xét \(\Delta ABC:\)
DK // AB (gt).
\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AD}{CD}\left(Talet\right).\)
Mà \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\left(cmt\right).\)
\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AB}{BC}.\\ \Rightarrow BK.BC=AB.CK.\)
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
Ta có: S A B C = 1/2.AB.AC = 1/2.21.28 = 294 ( c m 2 )
Vì △ ABC và △ ADB có chung đường cao kẻ từ đỉnh A nên:
Vậy S A D C = S A B C - S A B D = 294 – 126 = 168( c m 2 )
Câu b là kéo dài tại F ạ,tại mk ghi nhầm:)))
caau a bn làm đc chưa