K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho \(\left(O;\dfrac{AB}{2}\right)\), C là một điểm nằm trên nửa đường tròn. Qua D trên đoạn thẳng OA kẻ đường thẳng vuông góc với AB cắt BC tại F. Tiếp tuyến của nửa đường tròn tại C cắt DF tại I. Gọi E là là giao điểm của AC và DF. a. So sánh \(\widehat{IEC}\) với \(\widehat{ICE}\) và \(\widehat{ABC}\) b. Chứng minh \(\Delta EIC\) là tam giác cân c. Chứng minh \(IE=IC=\text{IF}\)\(IE=IC=\text{IF}\) 2. Cho...
Đọc tiếp

1, Cho \(\left(O;\dfrac{AB}{2}\right)\), C là một điểm nằm trên nửa đường tròn. Qua D trên đoạn thẳng OA kẻ đường thẳng vuông góc với AB cắt BC tại F. Tiếp tuyến của nửa đường tròn tại C cắt DF tại I. Gọi E là là giao điểm của AC và DF.

a. So sánh \(\widehat{IEC}\) với \(\widehat{ICE}\)\(\widehat{ABC}\)

b. Chứng minh \(\Delta EIC\) là tam giác cân

c. Chứng minh \(IE=IC=\text{IF}\)\(IE=IC=\text{IF}\)

2. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I.

a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\)

b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm.

3.Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh:

a. \(\Delta SMT\) cân

b. \(TM^2=TF\cdot TN\)

4. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE và CF cắt nhau tại H và cắt đường tròn theo thứ tự tại M,N,K. Kẻ đường kính AI. Chứng minh:

a. C là điểm chính giữa của \(\widehat{MCN}\)

b. N đối xứng với H qua AC ; M đối xứng với H qua BC ; K đối xứng với H qua AB.

c. Chứng minh: tứ giác BCIM là hình thang cân

d. Gọi G là trung điểm của BC. Chứng minh: \(AH=2OG\)

e. Chứng minh: \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)

5. Cho tam giác ABC đều nội tiếp (O;R). Gọi M là một điểm bất kỳ trên cung nhỏ BC. Lấy điểm I trên dây AM sao cho MI=MB.

a. Chứng minh tam giác MBI là tam giác đều.

b. Chứng minh MA=MB+MC.

c. Gọi D là giao điểm của MA và BC. Chứng minh: \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\)

d. Tính tổng \(MA^2+MB^2+MC^2\) theo R

6. Trong tuần đầu, 2 tổ sản xuất được 1500 bộ quần áo. Sang tuần thứ 2, tổ A vượt mức 25 %, tổ B giảm mức 18 % nên trong tuần này cả 2 tổ sản xuất được 1617 bộ. Hỏi trong tuần đầu mỗi tổ sản xuất được bao nhiêu bộ quần áo?

1
24 tháng 2 2019

Bài 6:

Gọi số bộ quần áo tổ 1 làm được trong tuần đầu là x

Điều kiện: \(x>0;x\in N\)\(^*\)

Số bộ quần áo tổ 2 làm được trong tuần đầu là 1500 - x

Số bộ quần áo tổ 1 làm được trong tuần thứ hai là 125%x

Số bộ quần áo tổ 2 làm được trong tuần thứ hai là 82%(1500−x)

Ta có phương trình:\(125\%x+82\%\left(1500-x\right)=1617\)

\(\Leftrightarrow\dfrac{5}{4}x+\dfrac{41}{50}\left(1500-x\right)=1617\)

\(\Leftrightarrow\dfrac{5}{4}x+1230-\dfrac{41}{50}x=1617\)

\(\Leftrightarrow\dfrac{5}{4}x-\dfrac{41}{50}x=1617-1230\)

\(\Leftrightarrow\dfrac{43}{100}x=387\)

\(\Leftrightarrow x=900\) (thoả mãn)

Vậy ...

30 tháng 11 2022

Bài 2:

\(\left\{{}\begin{matrix}a+1>=2\sqrt{a}\\b+1>=2\sqrt{b}\\c+1>=2\sqrt{c}\end{matrix}\right.\)

=>\(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

15 tháng 5 2017

1.

h(x)=x(x-1)+1=x2-x+1

Cho h(x)=0=>x2-x+1=0<=>\(\left(x^2-\dfrac{1}{2}x\right)-\left(\dfrac{1}{2}x-\dfrac{1}{4}\right)+\dfrac{3}{4}=0\)

<=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>PTVN

2.

(x-1).f(x)=(x+4).f(x+8)

*)Với x=1 ta có:

0.f(1)=5.f(9)

<=>5.f(9)=0

=>x=9 là 1 nghiệm của f(x)

*)với x=-4 ta có:

-5.f(-4)=0.f(4)

=>-5.f(-4)=0

=>x=-4 là 1 nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là x=-4 và x=9

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

21 tháng 4 2015

chữ xấu thế em, anh không nhìn thấy

5 tháng 8 2017

Khai triển, BĐT cần chứng minh tương đương 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Áp dụng AM-GM:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}}\)

\(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{b^2}{ac}}=\frac{3b}{\sqrt[3]{abc}}\)

\(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3\sqrt[3]{\frac{c^2}{ab}}=\frac{3c}{\sqrt[3]{abc}}\)

Cộng theo vế: \(3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)

Còn chứng minh \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a+b+c}{\sqrt[3]{abc}}\) hoàn toàn tương tự.Ta thu được đpcm

Dấu = xảy ra khi a=b=c

13 tháng 12 2018

Ta có: \(\left(1-a\right)\left(1-b\right)=1-a-b+ab\)

-Vì \(a>0;b>0\) nên ab > 0

Suy ra: \(\left(1-a\right)\left(1-b\right)>1-a-b\) (*)

-Vì c < 1 nên 1-c > 0

Tương tự (*) => \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>1-a-b-c\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>\left(1-a-b-c\right)\left(1-d\right)\)

\(d< 1\Rightarrow d-1>0\)

Vậy \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>1-a-b-c-d\)

=> (đpcm)

                                                                         

14 tháng 12 2018

Đặt \(A=\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)

\(A=\left(1-a-b+ab\right)\left(1-c-d+cd\right)\)

\(A=1-c-d+cd-a+ac+ad-acd-b+bd-bcd+ab-abc-abd+abcd+bc\)

\(A=1-a-b-c-d+cd\left(1-a\right)+ac\left(1-b\right)+bc\left(1-d\right)+bd\left(1-c\right)+abcd\)

Có: 0<a,b,c,d<1

=> \(cd\left(1-a\right)>0;ac\left(1-b\right)>0;bc\left(1-d\right)>0;bd\left(1-c\right)>0;abcd>0\)

\(\Rightarrow A>A-cd\left(1-a\right)-ac\left(1-b\right)-bc\left(1-d\right)-bd\left(1-c\right)-abcd=1-a-b-c-d\)

                                                                                                                                        đpcm