tìm giá trị nhỏ nhất (x2_2x+2011)#x2 với x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
bài này dễ mà
giá trị của S nhỏ nhất
<=> Ix+2I và I2y-10I bé nhất mà chúng có giái trị bé nhất =0
=> giá trụ bé nhất của S là 2011
để S đạt giá trị nhỏ nhất thì s=2011=>/x+2/ và/2y-10/=0=>x=-2;y=5
do các số trong giá trị tuyệt đối đều lớn hơn hoặc =0 nên muốn S đạt giá trị nhỏ nhất thì S nhỏ hơn bằng 2011
vậy thì mún S nhỏ nhất thì =>
x+2=0 => x=-2
2y-10=0 => y=5
vậy y=5 và x=-2
\(\left(\frac{3}{4}x-5\right)^2=\frac{9}{49}\)
=>\(\left(\frac{3}{4}x-5\right)^2=\left(\frac{3}{7}\right)^2\)
=>\(\frac{3}{4}x-5=\frac{3}{7};\frac{3}{4}x-5=-\frac{3}{7}\)
=>x=\(\frac{152}{21}\);x=\(\frac{128}{21}\)
b)Vì Ix+2I và I2y-10I luôn lớn hơn hoặc bằng 0
=>Để S đạt giá trị nhỏ nhât thì Ix+2I=0 và I2y-10I=0
=>x=-2;y=5
Vậy giá trị nhỏ nhất của S là:
0+0+2011=2011
KL:Với x=-2;y=5 thì S đạt giá trị nhỏ nhất =2011
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
a)\(A=\left|x-2012\right|+\left|2011-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+2011-x\right|=1\)
Dấu "=" khi \(2011\le x\le2012\)
Vậy \(Min_A=1\) khi \(2011\le x\le2012\)
Lời giải:
Để $M$ nhỏ nhất thì $2011-6033:(x-2010)$ nhỏ nhất. Giá trị này chính bằng $0$
Khi đó:
$2011-6033:(x-2010)=0$
$x-2011=6033:2011=3$
$x=2014$
$M=\frac{2011-2011}{2009\times 2010\times 2013}=0$
Ghi lại đề cho đúng đi bạn.
Sửa đề :
Tìm GTNN của \(A=\frac{x^2-2x+2011}{x^2}\)
Giải :
\(A=\frac{x^2-2x+2011}{x^2}\)
\(A=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(A=1-\frac{2}{x}+\frac{2011}{x^2}\)
\(A=1-2\cdot\frac{1}{x}+2011\cdot\left(\frac{1}{x}\right)^2\)
Đặt \(\frac{1}{x}=a\)
\(A=1-2a+2011a^2\)
\(A=2011\left(a^2-\frac{2}{2011}a+\frac{1}{2011}\right)\)
\(A=2011\left(a^2-2\cdot a\cdot\frac{1}{2011}+\frac{1}{2011^2}+\frac{2010}{4044121}\right)\)
\(A=2011\left[\left(a-\frac{1}{2011}\right)^2+\frac{2010}{4044121}\right]\)
\(A=2011\left(a-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2011}\)
Thay a ta có : \(\frac{1}{x}=\frac{1}{2011}\)
\(\Rightarrow x=2011\)
Vậy \(A_{min}=\frac{2010}{2011}\Leftrightarrow x=2011\)