K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Bn viết sai đề bài rồi???

12 tháng 8 2015

Biến đổi vế trái ta có :

    \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{1}{a}-\frac{1}{a+1}-\left(\frac{1}{a+1}-\frac{1}{a+2}\right)=\frac{1}{a}-\frac{1}{a+1}-\frac{1}{a+1}+\frac{1}{a+2}\)

  \(\frac{1}{a}-\frac{2}{a+1}+\frac{1}{a+2}=\frac{\left(a+1\right)\left(a+2\right)-2a\left(a+2\right)+a\left(a+1\right)}{a\left(a+1\right)\left(a+2\right)}\)

 \(=\frac{a^2+3a+2-2a^2-4a+a^2+a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)

Vậy Vế trái = Vế phải 

28 tháng 9 2019

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

28 tháng 9 2019

bạn làm như này nha:

Từ đpcm  \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

             \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

             \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)      

             \(\Leftrightarrow0=2.\left(\frac{a+b+c}{abc}\right)\)

             \(\Leftrightarrow0=a+b+c\)luôn đúng do giả thuyết cho

                                \(\Rightarrowđpcm\)

                                            

6 tháng 8 2017

Sửa đề : Chứng tỏ rằng \(\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a.\left(a+1\right)}\)

Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{1}{a.\left(a+1\right)}\)

\(\Rightarrowđpcm\)

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)