K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

\(y.9,2+y:0,25-y.3,2=\frac{3}{4}.\left(1\frac{1}{2}-\frac{6}{8}\right)\)

\(y.9,2+y.4-y.3,2=\frac{3}{4}.\frac{3}{4}\)

\(y.\left(9,2+4-3,2\right)=\frac{9}{16}\)

\(y.10=\frac{9}{16}\)

\(y=\frac{9}{16}:10\)

\(y=\frac{9}{160}\)

Chúc bạn học tốt !!!

29 tháng 5 2019

\(a,\)\(71+65\times4=\frac{x+140}{x}+260\)

\(\Rightarrow71+260=\frac{x-140}{x}+260\)

\(\Rightarrow71=\frac{x-140}{x}\)

\(\Rightarrow71x=x-140\)

\(\Rightarrow71x-x=-140\)

\(\Rightarrow70x=-140\)

\(\Rightarrow x=-2\)

29 tháng 5 2019

\(b,\)\(y\times\frac{15}{2}-\frac{1}{3}\times\left(\frac{1}{4}+y\right)=90\frac{2}{3}\)

\(\Rightarrow\frac{15y}{2}-\frac{1}{12}-\frac{y}{3}=\frac{272}{3}\)

\(\Rightarrow\frac{90y}{12}-\frac{1}{12}-\frac{4y}{12}=\frac{1088}{12}\)

\(\Rightarrow90y-1-4y=1088\)

\(\Rightarrow86y=1089\)

\(\Rightarrow y=\frac{1089}{86}\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Leftrightarrow\left|x-0,4\right|=3,6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}\)

b) Ta có:

\(\frac{x}{2}=y=\frac{z}{3}=\frac{2y}{2}=\frac{x-2y+z}{2-2+3}=\frac{210}{3}=70\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=70\\y=70\\\frac{z}{3}=70\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=140\\y=70\\z=210\end{matrix}\right.\)

Vậy \(x=140\); \(y=70\); \(z=210\)

c)\(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=\frac{-17}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{-9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;\frac{-9}{2}\right\}\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,25\right)^4.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^8.\left(0,5\right)^2\)

\(\Leftrightarrow x=\left(0,5\right)^{10}=\left(\frac{1}{2}\right)^{10}=\frac{1}{2^{10}}=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}\)

e) \(3^{x-1}+5.3^{x-1}=162\)

\(\Leftrightarrow6.3^{x-1}=162\)

\(\Leftrightarrow3^{x-1}=27\)

\(\Leftrightarrow3^{x-1}=3^3\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

f) \(\frac{x}{-25}=\frac{2}{5}\)

\(\Leftrightarrow x=\left(-25\right).\frac{2}{5}=-10\)

Vậy \(x=-10\)

g) \(\left|x+\frac{3}{4}\right|-\frac{3}{4}=\sqrt{\frac{1}{9}}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|-\frac{3}{4}=\frac{1}{3}\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{13}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{13}{12}\\x+\frac{3}{4}=-\frac{13}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{11}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{3};-\frac{11}{6}\right\}\)

10 tháng 12 2019

a) \(3,6-\left|x-0,4\right|=0\)

\(\Rightarrow\left|x-0,4\right|=3,6-0\)

\(\Rightarrow\left|x-0,4\right|=3,6.\)

\(\Rightarrow\left[{}\begin{matrix}x-0,4=3,6\\x-0,4=-3,6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,6+0,4\\x=\left(-3,6\right)+0,4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-3,2\end{matrix}\right.\)

Vậy \(x\in\left\{4;-3,2\right\}.\)

c) \(\left|x+0,25\right|-4=\frac{1}{4}\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{1}{4}+4\)

\(\Rightarrow\left|x+\frac{1}{4}\right|=\frac{17}{4}.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4}=\frac{17}{4}\\x+\frac{1}{4}=-\frac{17}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{17}{4}-\frac{1}{4}\\x=\left(-\frac{17}{4}\right)-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{9}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{4;-\frac{9}{2}\right\}.\)

d) \(x:\left(0,25\right)^4=\left(0,5\right)^2\)

\(\Rightarrow x:\left(0,25\right)^4=0,25\)

\(\Rightarrow x=\left(0,25\right).\left(0,25\right)^4\)

\(\Rightarrow x=\left(0,25\right)^5\)

\(\Rightarrow x=\frac{1}{1024}\)

Vậy \(x=\frac{1}{1024}.\)

Chúc bạn học tốt!

22 tháng 8 2019

Đậu phộng rANG !

22 tháng 8 2019

Ko làm đc thì đừng trl linh tinh nhé -_-

24 tháng 6 2017

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây