K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 1 2021

\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{n^2}\)

\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(>n-1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(=n-1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=n-1-\left(1-\frac{1}{n}\right)\)

\(=n-2+\frac{1}{n}>n-2\)

\(\Rightarrow n-2< S< n-1\)

ta có đpcm. 

1 tháng 1 2020

Tham khảo tại đây:

Câu hỏi của triệu minh Anh - Toán lớp 6 - Học toán với OnlineMath

11 tháng 12 2021

\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)

Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)

NV
9 tháng 2 2020

\(\frac{n^2-1}{n^2}=1-\frac{1}{n^2}< 1-\frac{1}{n\left(n+1\right)}=1-\frac{1}{n}+\frac{1}{n+1}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{3}+1-\frac{1}{3}+\frac{1}{4}+...+1-\frac{1}{n}+\frac{1}{n+1}=n-1+\frac{1}{n+1}-\frac{1}{2}\)

\(n>2\Rightarrow\frac{1}{n+1}-\frac{1}{2}< 0\Rightarrow B< n-1\)

\(\frac{n^2-1}{n^2}=1-\frac{1}{n^2}>1-\frac{1}{n\left(n-1\right)}=1-\frac{1}{n-1}+\frac{1}{n}\)

\(\Rightarrow B>1-1+\frac{1}{2}+1-\frac{1}{2}+\frac{1}{3}+...+1-\frac{1}{n-1}+\frac{1}{n}=n-2+\frac{1}{n}>n-2\)

\(\Rightarrow n-2< B< n-1\Rightarrow B\) nằm giữa 2 số tự nhiên liên tiếp nên B không phải là STN

7 tháng 4 2023

     

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

22 tháng 4 2017

\(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\left(n\in N^#\right)\)

Có  \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{\left(n-1\right)n}\)

                                            \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                            \(< 1-\frac{1}{n}< 1\left(\frac{1}{n}>0;n\in N^#\right)\)

\(\Rightarrow\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+1\)

                                                      \(< 1+1\)

                                                      \(< 2\)

\(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{n\left(n+1\right)}\)

                                                 \(>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

                                                 \(>1-\frac{1}{n+1}>1\)

\(1< \frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrow\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không phải là số tự nhiên

22 tháng 4 2017

Cảm ơn nha

29 tháng 12 2016

1. Tính tổng:

 Số số hạng có trong tổng là:

 (999-1):1+1=999 (số)

Số cặp có là:

 999:2=499 (cặp) và dư một số đó là số 500

Bạn hãy gộp số đầu và số cuối:

 (999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400

Vậy tổng S1 = 50400

Mih sẽ giải tiếp nha

29 tháng 12 2016

Số tự nhiên a sẽ chia hết cho 4 vì:

 36+12=48 sẽ chia hết co 4

Số a ko chia hết cho 9 vì:

 4+8=12 ko chia hết cho 9

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>UCLN(n+1;2n+3)=1

Vậy: n+1/2n+3 là phân số tối giản

Câu b đề sai rồi bạn