Chứng minh rằng:Nếu 1 tam giác vuông có một cạnh góc vuông đối diện với nó bằng nửa cạnh huyền thì tam giac đó sẽ có 1 góc nhọn=\(_{30^0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Xét ΔABC, ta có: ∠A= 90o; ∠B= 30o
Trên cạnh BC lấy điểm D sao cho CD = AC
Ta có: ΔACD cân tại C
Mà ∠C + ∠B = 90o (tính chất tam giác vuông)
Suy ra: ∠C = 90o - ∠B = 90o - 30o = 60o
Suy ra: ΔACD đều
Suy ra: AC = AD = DC và ∠A1= 60o
Ta có: ∠A1+ ∠A2 = ∠BAC = 90o
⇒ ∠A2 = 90o - ∠A1 = 90o - 60o = 30o
Trong ΔADB, ta có: ∠A2 = ∠B= 30o
Suy ra: ΔADB cân tại D (vì có 2 góc kề cạnh AB bằng nhau)
Hay AD = DB
Suy ra: AC = CD = DB mà CD + DB = BC
Vậy AC = 1/2 BC.
a)Gọi M là trung điểm cạnh huyền BC, Góc B=30 độ => Góc C=60 độ
Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
=> Tam giác AMC cân tại A
Mà góc C=60 độ => tâm giác AMC đều => AC=MC=1/2.BC => Cạnh đối diện với góc 30 độ bằng một nửa cạnh huyền
b)Theo t/c đường trung tuyến trong tam giác vuông : AM=1/2.BC=MC
Mà AC=BC => Tam giác AMC đều => Góc C=60 độ => Góc A=30 độ =>góc đối diện với cạnh bằng 1/2 cạnh huyền bằng 30 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
b)
hình chỉ tương đối để bạn dễ hình dung thôi
Trên tia đối của tia AB lấy điểm D sao cho AD = AB
tam giác ABC vuông tại A => AC _|_ AB (đn)
=> AC _|_ BD
=> góc CAD = góc CAB = 90 (đn)
xét tam giác CAD và tam giác CAB có : AC chung
AD = AB (Cách vẽ)
=> tam giác CAD = tam giác CAB (ch - cgv)
=> AD = AB (đn)
AB = AD => DB = 2AB
AB = 1/2BC (gt) => BC = 2AB
=> DB = CB = DC
=> tam giác CDB đều (đn)
=> góc CBD = 60 (tc)
tam giác ABC có góc A + góc B + góc C = 180
góc A = 90
=> góc C = 30