Cho \(\Delta ABC\)vuông tại A,từ A kẻ\(AH\perp BC\),trên BC lấy điểm E sao cho DE=BA.Kẻ \(EK\perp AC\)\(\left(K\in AC\right)\).Chứng minh AK=AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thôi để mình vẽ hình giùm bạn luôn nha!
Do mình sợ bạn vẽ không được nên mình mới vẽ giùm đấy!
Hình bạn tự vẽ nha!
C/m AH = CK:
Bài giải:
Xét △ABE có:
BA = BE (gt)
=> △ABE là △ cân
=> ∠BAE = ∠BEA
Ta có:
EK ⊥ AC
AB ⊥ AC
=> AB // EK
=> ∠BAE = ∠AEK (so le trong)
Xét △v AEH và △v AEK
AE chung
∠HEA = ∠AEK ( cùng bằng góc BAE)
=> △v AEH = △v AEK (cạnh huyền - góc nhọn)
=> AK = AH (cạnh tương ứng)
Ta có : BA = BE ( GT ) => Góc BAE = Góc BEA
hay Góc BAE = Góc HEA
+ Góc BAE + góc EAK = 90 độ ( = góc BAC ) ( 1 )
+ Xét tam giác HAE vuông tại H :
Góc HAE + góc HEA = 90 độ ( 2 )
Từ ( 1 ) ; ( 2 ) => Góc EAK = Góc HAE
Xét tam giác HAE và tam giác KAE có :
góc EAK = góc HAE ( cmt )
AE chung
Góc AHE = Góc AKE ( = 90 độ )
=> Tam giác HAE = Tam giác KAE ( chgn )
=> AH = AK ( 2 cạnh tương ứng )
Vậy AH = AK
Chúc bạn học tốt !!!
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
hình hơi sấu hihi^_^
xin lỗi bn nha mk ko có thời gian nên chỉ hướng dẫn cách làm cho bn đc thôi
kẻ EF vuông góc vs AB,nối A vs E
bn c/m \(\Delta ABH=\Delta EBF\left(ch-gn\right)\)( góc B chung ,AB=EB)
=>AH=EF(1)
Do \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}\Rightarrow EF//AC\Rightarrow EF//AK}\)
=> 2cais góc E và A mk đánh dấu =nhau
=> \(\Delta KEA=\Delta FAE\left(ch-gn\right)\)
=> AK=EF(2)
TỪ (1),(2) =>ĐPCM
a) Từ A kẻ đường cao ( hoặc đường trung tuyến , phân giác) cắt HK tại I
Xét tam giác AIH và tam giác AIK có :
^A1 = ^A2 ( AI là đường cao của ^A)
AI cạnh chung
suy ra : tam giác AIH = tam giác AIK( Cạnh góc vuông - Góc nhọn)
suy ra : AK = AH ( 2 cạnh tương ứng )
chú ý : ^ là góc , ngoài ra có thể chứng minh theo trường hợp khác như g-c-g
sửa lại đề 1 chút nhé :v BE = BA phải chứ
có tam giác ABC vuông tại A
=> CA _|_ AB (đn)
EK _|_ AC (gt)
=> KE // AB (tc) mà góc KEA so le trong EAB
=> góc KEA = góc EAB (tc) (1)
AB = BE (GT) => tam giác ABE cân tại B (đn) => góc EAB = góc AEB (2)
(1)(2) => góc KEA = góc AEB (tcbc)
xét tam giác AEK và tam giác AEH có : AE chung
góc EKA = góc EHA = 90 do EK _|_ AC (gt) và AH _|_ BC (gt)
=> tam giác AEK = tam giác AEH (ch - gn)
=> AK = AH (đn)