cho hình vuông ABCD . E là một điểm tùy ý trên đường chéo BD . Kẻ EM \(\perp\)AB, EN \(\perp\)AD.
a, cmr DM\(\perp\)CN
b, gọi I là giao điểm của BN và DM . CMR c, e,i thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADKE có
AE//DK
AE=DK
góc EAD=90 độ
=>ADKE là hình chữ nhật
b: Xét tứ giác AECK có
AE//CK
AE=CK
=>AECK là hình bình hành
=>AK//EC
=>AK vuông góc DM
Chưa ra câu c ^^
a/ Xét tứ giác AEMF có
\(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^o\)
=> Tứ giác AEMF là hcn
b/ Xét t/g AMC có OP là đường trung bình
=> OP // AM
=> BD // AM
=> Tứ giác AMBD là hình thang
d/ Để hình thang AMBD là htc thì AD = BM
=> BM = BC
=> t/g BMC cân tại B có BP là đương trung tuyến
=> CP ⊥ BP tại P
GỢI Ý:
*Bản chất câu hỏi của bài toán là chứng minh N,E,C thẳng hàng.
*Chứng minh AMBN là hình vuông \(\Rightarrow\widehat{OMB}=\widehat{OBM}=45^0\).
*Chứng minh tứ giác OBHM nội tiếp.
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{OHB}\\\widehat{OBM}=\widehat{OHM}\end{matrix}\right.\)
Suy ra ME là phân giác của tam giác BHM.
\(\Rightarrow\dfrac{ME}{BE}=\dfrac{MH}{BH}\)
△MHB∼△CMB nên \(\dfrac{MH}{BH}=\dfrac{CM}{BM}\)
\(\Rightarrow\dfrac{ME}{BE}=\dfrac{CM}{BM}=\dfrac{CM}{BN}\)
\(\Rightarrow\)△CME∼△NBE (c-g-c).
\(\Rightarrow\widehat{CEM}=\widehat{NEB}\) nên C,E,N thẳng hàng.
*NC cắt (O) tại D. \(\Rightarrow\widehat{MDN}=90^0=\widehat{MDC}\)
\(\Rightarrow\)Tứ giác MDHC nội tiếp
\(\Rightarrow\)D thuộc đường tròn ngoại tiếp tam giác MHC nên D trùng K.
\(\Rightarrowđpcm\)