Chứng minh \(\dfrac{a^3+b^3}{2}>=\left(\dfrac{a+b}{2}\right)^3\)vs a>=0 ,b>=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bđt cauchy ta có:
\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)
\(a^3+a^3+b^3\ge3a^2b\)
công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)
\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
suy ra đpcm
ta luôn có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)
suy ra đpcm
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
a: \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\sqrt{a}-\sqrt{b}\)
b: \(VT=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{2-\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{3+\sqrt{3}}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)+2\left(\sqrt{2}-1\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{2\left(\sqrt{6}-\sqrt{2}+\sqrt{3}-1+\sqrt{6}+\sqrt{2}-\sqrt{3}-1\right)}{\sqrt{3}\cdot2}\)
\(=\dfrac{2\left(2\sqrt{6}-2\right)}{2\sqrt{3}}=\dfrac{2\sqrt{6}-2}{\sqrt{3}}\)
Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:
\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)
Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)
ai tick cho mik , mik tick lại cho !^__<nhớ giải câu hỏi nhé ! thanks
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)
\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)
\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)
Từ điều (3) , (4) , (5)
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )
Biến đổi tương đương:
\(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
\(\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng do \(\left\{{}\begin{matrix}a\ge0;b\ge0\Rightarrow a+b\ge0\\\left(a-b\right)^2\ge0\forall a;b\end{matrix}\right.\) )
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b\)