K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

\(\frac{1+3^2+3^4+3^6}{1+3+3^2+3^3+3^4+3^5+3^6+3^7}\)

<=> \(\frac{1+3^2+3^4+3^6}{1+3+3^2+3^6+3+3^3+3^5+3^7}\)

<=> \(\frac{1+3^2+3^4+3^6}{1+3^2+3^4+3^6+3\left(1+3^2+3^4+3^6\right)}\)

<=> \(\frac{1+3^2+3^4+3^6}{4\left(1+3^2+3^4+3^6\right)}\)

<=> \(\frac{1}{4}\)

21 tháng 7 2019

a) 3+15+35+63           = 116

18+90+210+378            378

=58/189

21 tháng 7 2019

a) \(\frac{1.3+3.5+5.7+7.9}{3.6+9.10+15.14+21.18}\)

\(\frac{1.3+3.5+5.7+7.9}{1.3.2.3+3.5.2.3+5.7.2.3+7.9.2.3}\)

\(\frac{1.3+3.5+5.7+7.9}{1.3.6+3.5.6+5.7.6+7.9.6}\)

\(\frac{1.3+3.5+5.7+7.9}{6.\left(1.3+3.5+5.7+7.9\right)}=\frac{1}{6}\)

Dấu "." là dấu nhân cấp 2 

b)  \(\frac{1.2+2.3+3.4+4.5}{3.6+6.9+9.12+12.15}\)

\(\frac{1.2+2.3+3.4+4.5}{1.2.3.3+2.3.3.3+3.4.3.3+4.5.3.3}\)

\(\frac{1.2+2.3+3.4+4.5}{1.2.9+2.3.9+3.4.9+4.5.9}\)

\(\frac{1.2+2.3+3.4+4.5}{9.\left(1.2+2.3+3.4+4.5\right)}=\frac{1}{9}\)

Dấu "." là dấu nhân cấp 2 

c) \(\frac{0,3+\frac{3}{7}+\frac{3}{11}}{0,4+\frac{4}{7}+\frac{4}{11}}\)\(\frac{\frac{3}{10}+\frac{3}{7}+\frac{3}{11}}{\frac{4}{10}+\frac{4}{7}+\frac{4}{11}}\)\(\frac{3.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}{4.\left(\frac{1}{10}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{4}\)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

6 tháng 4 2020

đây nhé

5 tháng 12 2019

\(a)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\)

\(=\frac{24}{2}\)

\(=12\)

\(b)\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\left(2+\sqrt{8}-\sqrt{6}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{2}+2-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)

\(=1+\sqrt{2}\)

\(c)A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-3}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{44\left(2-\sqrt{3}\right)}{22}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{2\left(2-\sqrt{3}\right)}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)

\(A=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)

\(A=3-1=2\)

P/s: nếu đề là vậy thì t ra kết quả như vậy ạ, nhưng lần sau khi đăng câu hỏi bạn nên viết rõ hơn ra nhé

18 tháng 8 2023

a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)

b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)

c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)

\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)

TH
Thầy Hùng Olm
Manager VIP
4 tháng 5 2023

a. \(\dfrac{656565}{272727}=\dfrac{65}{27}\)

b. \(\dfrac{2}{7}\left(\dfrac{3}{4}+\dfrac{9}{4}\right)=\dfrac{6}{7}\)