Cho tam giác đều ABC nội tiếp (O;R). M là điểm trên nửa đường tròn. Xác định M để:
a) Diện tích tam giác MAB lớn nhất;
b) Chu vi tam giác MAB lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước thẳng và compa).
+ Dựng đoạn thẳng AB = 3cm .
+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.
Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.
b) * Vẽ đường tròn:
Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực.
Dựng đường trung trực của đoạn thẳng BC và CA.
Hai đường trung trực cắt nhau tại O.
Vẽ đường tròn tâm O, bán kính OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.
* Tính bán kính đường tròn.
+ Gọi A’ là trung điểm BC ⇒ A’C = BC/2 = a/2.
và AA’ ⊥ BC
+ Do tam giác ABC là tam giác đều nên 3 đường trung trực đồng thời là ba đường trung tuyến
=> Giao điểm ba đường trung trực cũng là giao điểm ba đường trung tuyến
Suy ra O là trọng tâm tam giác ABC.
Vậy R = √3 (cm).
c) * Vẽ đường tròn:
Gọi A’; B’; C’ lần lượt là chân đường phân giác trong ứng với các góc
Do tam giác ABC là tam giác đều nên A’; B’; C’ đồng thời là trung điểm BC; CA; AB.
Đường tròn (O; r) là đường tròn tâm O; bán kính OA’ = OB’ = OC’.
* Tính r:
d) Vẽ các tiếp tuyến với đường tròn (O; R) tại A, B, C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ΔIJK là tam giác đều ngoại tiếp (O; R).
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)
b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).
Ta có: R= OA = AA' = . = . = √3 (cm).
c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.
r = OA' = AA' = = (cm)
d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).
a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)
b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).
Ta có: R= OA = AA' = . = . = √3 (cm).
c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.
r = OA' = AA' = = (cm)
d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).
Độ dài cạnh tam giác đều là \(a\left(cm\right)\)thì độ dài bán kính đường tròn ngoại tiếp tam giác là \(\frac{a\sqrt{3}}{3}\left(cm\right)\)
\(\frac{a\sqrt{3}}{3}=2\Leftrightarrow a=2\sqrt{3}\left(cm\right)\)
1: ΔABC vuông tại A
nên ΔABC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
ΔOAD cân tại O
mà OI là đường cao
nên I là trung điểm của AD
Xét ΔABC vuông tại A có AI là đường cao
nên \(IA^2=IB\cdot IC\)
=>\(IA\cdot ID=IB\cdot IC\)
2:
a: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC
=>AO vuông góc BC tại trung điểm của BC
=>AO vuông góc BC tại H và H là trung điểm của BC
b: Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)
ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)
c: Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)
=>\(AB=4\sqrt{3}\left(cm\right)\)
=>\(BC=4\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)